Как построить карьеру в ИИ, не будучи математическим гением |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-11-09 10:43 Разработчикам сегодня интересно не просто писать стандартные программы, а быть на «передовой» — получать специализацию в наиболее перспективных сферах. ИИ, нейронные сети, машинное обучение, big data и data science, без сомнения, очень интересные направления в программировании, и это все понимают. Но чтобы стать высококлассным дата-сайентистом, новичку придется освоить с нуля большой объем разносторонних знаний. А состоявшемуся специалисту иного профиля, например, фронтенд-разработчику, основательно «перековаться». Практика показывает, что решиться на это не всегда просто. Мешают три главных страха, с которыми сталкивается практически каждый, кто задумал строить карьеру в области ИИ.
Страх первый: я не смогу найти работу с достойной зарплатой Этот вопрос особенно актуален для состоявшихся специалистов, которые довольны своим стабильным доходом. Им просто интересна область ИИ. Но для того, чтобы поменять карьерный вектор, нужно переучиться. Это потребует и время, и финансы. Возникает вопрос: «А смогу ли я найти работу с не меньшей (желательно, и большей) зарплатой?». Проблема в том, что никто не сможет заранее ответить на этот вопрос: специалисты в области ИИ, машинного обучения и data science зарабатывают по-разному в зависимости от опыта, стажа, навыков, мастерства, уровня поставленных задач и конкретной компании. По данным hh.ru, разброс составляет от 75 до 300 тыс. рублей. Для сравнения, средняя зарплата мобайл-разработчика — 114 тыс., программиста Python — 105 тыс., программиста iOS — 100 тыс. Зарплата новичка без опыта работы будет, конечно, немного ниже, чем в целом по отрасли. Но зато и перспективы дальнейшего роста шире. Страх потерять доход тесно связан с боязнью не найти работу вообще. А это, в свою очередь, относится напрямую к мифу об ограниченности внедрения систем ИИ в экономике. Судя по информационному полю, создается впечатление, что ИИ в России использует только с десяток ведущих ИТ-компаний вроде «Яндекса», Mail.Ru Group, «МегаФона», МТС, «Билайна», Теле2, ABBYY и Сбербанка. Понятно, что требования к кандидатам там запредельны, туда очень сложно устроиться на работу. ИТ-гиганты являются флагманами внедрения инноваций. На этом строятся их имидж и последовательная PR-поддержка. На самом деле возможности для трудоустройства гораздо шире. Элементы ИИ и data science сегодня используются повсеместно.
Есть еще множество примеров различных ниш — это и торговые офлайн-сети, которым нужны алгоритмы поиска отзывов в интернете, и медицина, где ИИ уже анализирует снимки, и маркетинговые компании, где нужно обрабатывать массивы видеоданных. Во всех этих сферах реализуются задачи различной сложности. Новичку, только закончившему обучение, нужно начинать с более простых вещей: например, заниматься обработкой баз данных. Банки подходят идеально — они накапливают огромное количество информации, складывающейся из заявок, анкет, сведений о клиентах. Эти данные нуждаются в очистке, разработке приемлемых форм хранения и передачи. А затем в дата-майнинге — поиске признаков, на основе которых можно построить какую-то полезную модель. Неопытному специалисту такая работа может дать мощный старт. Чтобы набить руку, нужно от шести до 12 месяцев. После этого можно пробовать свои силы в более сложных задачах, например, применять алгоритмы ИИ на средних и больших данных.
Страх второй: я не смогу осилить высшую математику Компетенции ИИ-программистов складываются из трех блоков: высшая математика, программирование и предметная сфера. Последнее зависит от профиля организации. Учиться специально в этой области, как правило, не обязательно. Достаточный для занимаемой должности уровень знаний (например, в маркетинге или финансах) кандидат получает в ходе испытательного срока. С программированием все понятно — новички учатся охотно и с удовольствием. Для работающих профессионалов материал не представляет сложности: базовые знания уже есть, нужно только «добрать» недостающие навыки — языки, библиотеки, софт. А вот с высшей математикой все сложнее. В основном именно она отпугивает людей с дипломами гуманитариев или тех технарей, которые в вузе получили «психологическую травму» от бесконечной сдачи-пересдачи экзаменов по точным наукам. Этот страх можно назвать беспочвенным. Специалист по ИИ вовсе не обязан быть математическим гением. В область компетенции входит лишь небольшая часть линейной алгебры, определенные сферы матанализа и теории вероятностей, а также статистика. Точно таким же образом происходит подготовка в программировании: отнюдь не тотальный объем знаний, а только его часть — в частности, языки Python, C, C++, язык запросов SQL и Linux. Страх третий: я не смогу конкурировать с выпускниками физмата Эта боязнь присуща тем, кто не имеет диплома о высшем образовании либо имеет его совершенно в другой области. Но практика показывает, что в сфере программирования никто не обращает внимания на какие-либо регалии. Людей с дипломами много, а вот компетентных специалистов — нет. Есть два типа кандидатов, которые обычно заваливают собеседования на должность ИИ программиста.
Таким образом, выпускники физмата и даже кандидаты наук не имеют никакого автоматического преимущества перед обычным разработчиком, будь он хоть трижды гуманитарий. HR-специалисты самых топовых ИТ-гигантов сбиваются с ног в поисках таких эрудированных кандидатов со знанием английского языка. Если находят такого, то последнее, что они делают, это проверяют его диплом о высшем образовании. Рынок труда наводнен специалистами с однобокой подготовкой, а потому шиковать компаниям не приходится. Три вещи, которые нужно сделать, чтобы построить успешную карьеру в сфере ИИ
Источник: hightech.fm Комментарии: |
|