Глубокое обучение заставило виртуального персонажа одеться по-человечески |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-11-02 23:41 Американские исследователи использовали метод глубокого обучения с подкреплением для того, чтобы научить виртуального персонажа одеваться. В процессе он учился сам, а алгоритм оценивал эффективность по положению одежды на его теле. Так ученым удалось правдоподобно одеть анимированного персонажа в футболку, рубашку и больничную робу. Препринт статьи опубликован на сайте Технологического института Джорджии. Надевание одежды — довольно обычное для человека занятие, которое при этом требует выполнения координированных движений при взаимодействии с объектом. Именно поэтому автоматическое анимирование такого процесса — занятие сложное: можно, к примеру, обучить субъект симуляции на видео, но такие данные будут неоднородными, а потребоваться их может очень много. Специалисты под руководством Александра Клегга (Alexander Clegg) из Технологического института Джорджии решили использовать для решения такой задачи метод глубокого обучения с подкреплением, суть которого заключается в том, что управляемый алгоритмом агент находится в среде и, выполняя различные действия, получает за них подкрепление — награду. Таким образом он учится выполнять последовательность действий, приводящую к наибольшей награде, и тем самым постепенно приближается к нужному создателям результату. В созданной системе виртуальный человек учится надевать на себя одежду. Для обучения системы разработчики взяли три задачи (надевание рубашки, футболки и больничной робы: последнее — с помощью виртуального робота-помощника) и разделили их на небольшие подзадачи, каждую из которых для достижения результата необходимо выполнять по-очереди. К примеру, надевание рубашки заключается в том, чтобы засунуть одну руку в рукав, затем завести вторую руку за спину, поймать второй рукав, засунуть руку в него и вернуть тело в изначальное положение. Каждому движению алгоритм обучается по-отдельности, при этом положение субъекта в конце каждой подзадачи сверяется с началом следующей. В качестве подкрепления алгоритм оценивает то, насколько конечность виртуального человека одета в одежду в определенный момент симуляции (для этого на его теле располагались специальные условные «сенсоры») и насколько это соответствует тому, что должно быть в правильно работающей модели.
В результате исследователям удалось реалистично одеть виртуального персонажа в рубашку, футболку и больничную робу. В будущем такой алгоритм может применяться в анимации, что облегчит процесс ее создания из-за отсутствия необходимости в большом количестве данных. Свой проект ученые также покажут на конференции SIGGRAPH Asia, которая пройдет в Токио в начале декабря. Разработчики учат алгоритмы и более сложным движениям: например, этой весной исследователи из США и Канады с помощью обучения с подкреплением научили виртуального персонажа сложным движениям, в том числе — на основе видео людей. Елизавета Ивтушок Источник: nplus1.ru Комментарии: |
|