Физики КФУ обнаружили высокотемпературную спиновую сверхпроводимость |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-11-13 09:01 Ученые Института физики Казанского федерального университета первыми в мире получили при комнатной температуре квантовое состояние магнонов – носителей магнетизма. Оно аналогично сверхтекучести атомов и сверхпроводимости электронов в сверхпроводнике. Сотрудникам кафедры квантовой электроники и магнитной радиоспектроскопии Института физики КФУ, которой заведует Мурат Тагиров, удалось получить на пленках иттриевого феррит-граната бозе-эйнштейновскую конденсацию магнонов и сопровождающую ее спиновую сверхтекучесть при комнатной температуре. Открытие было сделано группой физиков под руководством Юрия Бунькова в рамках проекта, поддержанного грантом Российского научного фонда. Результаты исследования представлены в статье, отправленной для публикации в журнал Nature Physics. С ее препринтом можно ознакомиться на сайте Корнелльского университета Сверхтекучестью называют способность вещества в особом состоянии (квантовой жидкости) протекать через узкие щели и капилляры без трения, а сверхпроводимостью – способность некоторых веществ проводить электрический ток без сопротивления. Впервые явление сверхтекучести было обнаружено П.Л.Капицей в изотопе гелия (4He) при температурах порядка 1 Кельвина. За это открытие П.Л.Капица 40 лет спустя получил Нобелевскую премию по физике. Позднее была открыта сверхтекучесть при температуре 0,003 К в другом изотопе гелия – 3He. В 80-е годы прошлого века, исследуя 3He, группа ученых Института физических проблем им.П.Л.Капицы РАН под руководством А.С.Боровика-Романова и Ю.М.Бунькова при температурах близких к абсолютному нулю обнаружила новый тип сверхтекучего состояния — магнитную (спиновую) сверхпроводимость. Она обеспечивает перенос намагниченности без трения. В 1993 году коллектив авторов «за цикл работ по обнаружению и исследованию магнитной сверхтекучести» удостоили Госпремии России, а в 2008 году Ю.М.Буньков, В.В.Дмитриев и И.А.Фомин получили «за открытие и объяснение фазово-когерентной спиновой прецессии и спиновой сверхтекучести в 3He-В» Премию Фрица Лондона – высшую премию в области физики низких температур. Позднее явление сверхтекучести было открыто и в других системах, в частности в разреженных атомных бозе-эйнштейновских конденсатах (агрегатное состояние вещества, основу которого составляют охлажденные до сверхнизких температур бозоны). «Сверхтекучесть и сверхпроводимость при комнатной температуре до сих пор никому обнаружить не удалось. А вот спиновую (или магнонную) сверхтекучесть при комнатной температуре мы обнаружили в пленках иттриевого феррит-граната. Его свойства очень похожи на свойства сверхтекучего 3He, – говорит доктор физико-математических наук, профессор Казанского федерального университета Юрий Буньков. – Для того чтобы создать спиновую сверхтекучесть, нам нужно было поднять плотность магнонов до такого уровня, при котором они образуют когерентное состояние, то есть создать бозе-конденсацию магнонов (магнон – квазичастица, носитель магнетизма, как электрон – носитель электрического заряда). Очень важным моментом в нашем открытии является то, что бозе-конденсацию магнонов удалось получить для стоячих спиновых волн, для бегущих спиновых волн она была получена ранее, но использовать ее крайне тяжело, так как она не взаимодействует с магнитным полем». Пленки иттриевого феррит-граната сейчас используются для изготовления всевозможных приборов магнитной электроники (магноники). С открытием спиновой (магнонной) сверхтекучести при комнатной температуре магноника превратится в «супермагнонику», считает Юрий Буньков. Приборы на “магнонных” компонентах станут более миниатюрными и чувствительными. К таким приборам, например, относятся сверхчувствительные детекторы магнитного поля СКВИД (от англ. SQUID, Superconducting Quantum Interference Device — «сверхпроводящий квантовый интерферометр»). СКВИД-магнитометры применяются не только в научных целях и в промышленности, но и в медицине – для исследования активность мозга путем измерения магнитного поля, возникающего в результате электрической активности нейронов. Кроме того, открытое казанскими физиками квантовое явление можно будет использовать при создании квантового компьютера. В то же время появится возможность существенно уменьшить энергопотребление обычных компьютеров и суперкомпьютеров. Источник: www.rscf.ru Комментарии: |
|