Доступна СУБД EuclidesDB, использующая элементы машинного обучения |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-11-26 18:51 Подготовлен первый экспериментальный выпуск СУБД EuclidesDB, предоставляющей средства для использования моделей машинного обучения при индексировании и выборки данных. СУБД позволяет привязывать к различным классам информации отдельные модели машинного обучения, например, можно подключить модель для классификации изображений и применять СУБД для поиска похожих фотографий или выборки изображений, на которых присутствует определённый объект. Проект написан на языке С++ и распространяется под лицензией Apache 2.0. Модели машинного обучения обрабатываются при помощи библиотеки PyTorch (используется C++-интерфейс libtorch). СУБД EuclidesDB предоставляет универсальное решение для создания систем обработки данных с использованием моделей машинного обучения, образующее готовый каркас для подключения необходимых моделей и их применения для поиска похожих данных. Для каждой категории данных могут подключаться отдельные модели, например, для поиска туфель может использоваться одна модель, натренированная на изображениях обуви, а для поиска футболок - другая. На практике, данные модели могут применяться для рекомендации клиенту интернет-магазина туфель и футболок, наиболее похожих на те, что уже выбрал покупатель. При добавлении новых данных в БД, например, изображения, вместе с данными указывается модель машинного обучения, которую следует применить для индексации. Результаты обработки сохраняются в локальное хранилище в формате ключ/значение, и используются при построении индекса запросов. При обработке запроса похожих элементов, переданный в запросе эталонный элемент обрабатывается с использованием одного из выбранных алгоритмов поиска похожих объектов. В запросе определяется допустимый диапазон моделей, которые следует использовать при поиске. На выходе для каждой из выбранных моделей возвращается список наиболее близких элементов с указанием уровня релевантности. Взаимодействие с СУБД осуществляется с использованием протокола gRPC c применением HTTP/2 для сетевого взаимодействия и Protocol Buffers для сериализации данных. Низкоуровневое хранение данных реализовано с использованием LevelDB. Логика обработки моделей задаётся на языке Python (TorchScript ) и оформляется в виде модулей к PyTorch. В комплекте поставляются три готовые модели (resnet101, resnet18 и vgg16), обеспечивающие распознавание и классификацию изображений. В дальнейшем планируется включить в состав модели для обработки других видов информации. Поддерживается несколько методов индексации и поиска данных:
Источник: www.opennet.ru Комментарии: |
|