Исключительные свойства дендритов объясняют вычислительную мощность человеческого мозга |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-10-28 17:00 Ученые обнаружили различия в том, как нейроны в мозге человека и крысы переносят сигналы, - пишет sciencedaily.com со ссылкой на Cell. Нейроны в мозге человека получают электрические сигналы от тысяч других клеток, а длинные нейронные расширения, называемые дендритами, играют важную роль в интеграции всей этой информации, чтобы клетки могли реагировать соответствующим образом. Используя труднодоступные образцы ткани головного мозга человека, нейрофизиологи Массачусетского технологического института обнаружили, что человеческие дендриты имеют особенные, по сравнению с другими видами, электрические свойства. Электрические сигналы ослабевают, когда они протекают по человеческим дендритам, что приводит к более высокой степени электрической изолированности, а это означает, что небольшие участки дендритов могут вести себя независимо от других частей нейрона. По мнению исследователей, эти различия могут способствовать повышению вычислительной мощности человеческого мозга. «Дело не только в том, что люди умны, потому что у них больше нейронов и кора крупнее, чем у других животных. Дело в том, что изначально нейроны ведут себя по-другому, - говорит автор исследования Марк Харнетт. - В человеческих нейронах существует большая электрическая изолированность, что позволяет им быть немного более независимыми и потенциально приводит к увеличению вычислительных возможностей отдельных нейронов». Харнетт - сотрудник Института МакГоверна Массачусетского технологического института - и Сидней Кэш - помощник профессора неврологии в Гарвардской медицинской школе и Массачусетской общей больнице - являются старшими авторами исследования, которое появляется в выпуске 18 октября Cell. Ведущим автором статьи является Лу Боулье-Ларош, аспирант кафедры мозга и когнитивных наук Массачусетского технологического института. Нейронные вычисления Дендриты можно рассматривать как аналогичные транзисторам в компьютере, которые выполняют простые операции с использованием электрических сигналов. Дендриты получают входной сигнал от многих других нейронов и переносят эти сигналы телу нейрона. При достаточной стимуляции нейрон создает потенциал действия - электрический импульс, который затем стимулирует другие нейроны. Большие сети этих нейронов общаются друг с другом, чтобы генерировать мысли и поведение. Структура одного нейрона часто напоминает дерево, причем многие ветви одного нейрона приносят информацию, которая поступает далеко от тела клетки. Предыдущие исследования показали, что сила электрических сигналов, поступающих в тело клетки, зависит, в частности, от того, как далеко они движутся по дендриту, чтобы добраться туда. По мере продвижения сигналы становятся слабее, поэтому сигнал далеко от тела клетки, имеет меньшее влияние, чем тот, который расположен близко к нему. Дендриты в коре головного мозга человека намного длиннее, чем у крыс и большинства других видов, потому что кора человека в процессе эволюции развилась намного толще, чем у других видов. У людей кора составляет около 75% общего объема мозга, по сравнению с примерно 30% в мозге крысы. Несмотря на то, что кора человека в два-три раза толще, чем у крыс, она имеет сходное устройство и состоит из шести разных слоев нейронов. Нейроны из пятого слоя имеют достаточно длинные дендриты, которые могут достигать первого слоя, а это означает, что по мере развития человеческого мозга дендриты должны были удлиняться, а электрические сигналы проходить гораздо большие расстояния. В новом исследовании команда Массачусетского технологического института выясняла, как эти различия в длине могут повлиять на электрические свойства дендритов. Они смогли сравнить электрическую активность в дендритах крыс и людей, используя небольшие (размером с ноготь) кусочки ткани передней височной доли головного мозга, удаленные от пациентов с эпилепсией. Эксперимент показал, что передняя височная доля не поражается эпилепсией, и ткань кажется нормальной при обследовании с помощью невропатологических методов. Эта часть мозга, по-видимому, выполняет множество функций, включая язык и визуальную обработку, но не критически важна для выполнения какой-либо из них: пациенты могут нормально функционировать после ее удаления. Как только ткань была удалена, исследователи поместили ее в раствор, очень похожий на спинномозговую жидкость, с проходящим через нее кислородом. Это позволило им сохранить живую ткань в течение 48 часов. В течение этого времени они использовали метод, известный как патч-зажим электрофизиологии, чтобы зафиксировать, как электрические сигналы движутся вдоль дендритов пирамидальных нейронов - наиболее распространенным типом возбуждающих нейронов в коре. Уникальные черты Исследователи обнаружили, что, поскольку человеческие дендриты покрывают большие расстояния, сигнал, протекающий по дендриту человека из первого слоя в пятый, намного слабее, чем аналогичный сигнал, проходящий такой же путь по дендриту крысы. Ученые также выяснили, что дендриты человека и крысы имеют одинаковое количество ионных каналов, которые регулируют ток, но эти каналы расположены менее плотно в дендритах человека в результате удлинения дендрита. Была разработана подробная биофизическая модель, которая показывает, что различия в плотности могут объяснить различия в электрической активности между дендритами человека и крысы. Остается вопрос, как эти различия влияют на человеческий мозг? Гипотеза Харнетта состоит в том, что из-за этих различий, которые позволяют большему количеству областей дендрита влиять на силу входящего сигнала, отдельные нейроны могут выполнять более сложные вычисления. В будущих исследованиях Харнетт надеется более подробно исследовать влияние этих электрических свойств и изучить, как эти и другие уникальные особенности человеческих нейронов влияют на увеличение вычислительной мощности. Источник: scientificrussia.ru Комментарии: |
|