«Грязная сверхпроводимость» защитит биты квантовых компьютеров |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-10-15 16:14 До сих пор природа этого важного феномена оставалась неясной. Международная группа физиков во главе с Михаилом Фейгельманом из Института теоретической физики им. Л.Д. Ландау объяснила поведение «грязных» сверхпроводников при низких температурах в присутствии магнитного поля. Понимание подобных процессов позволит использовать их для создания эффективных кубитов (квантовых битов) — «кирпичиков» перспективных квантовых компьютеров. Соответствующая статья опубликована в Nature Physics. Классическая теория сверхпроводимости неплохо предсказывает, как ведут себя сверхпроводники в магнитном поле. Если поле слабое, сверхпроводник «выталкивает» его линии из своего объема (эффект Мейснера), а если оно становится сильнее определенного уровня, то его линии все же проникнут в материал, а сверхпроводящие свойства при этом мгновенно пропадут. Это так называемое критическое магнитное поле, и чем ниже температура, тем сильнее оно должно быть. Однако при очень сильном охлаждении (до 20 процентов от критической температуры наступления сверхпроводимости в материале и ниже) эта закономерность исчезает — критическое магнитное поле внезапно перестает зависеть от температуры. Однако есть класс материалов (сплавов и металлов), у которых так сильно нарушена кристаллическая решетка, что они практически аморфны, лишены внутренней упорядоченной структуры. Там сила критического магнитного поля увеличивается по мере падения температуры, и момент его «отвязки» от нее не наступает. Известно это очень давно, но причины феномена всегда оставались неясными. Авторы новой работы попытались разобраться в них. Для этого они измерили в «грязных» материалах еще один важнейший параметр сверхпроводников — критический ток, или максимальное значение незатухающего тока, который может протекать в сверхпроводнике без потерь энергии на тепловое рассеяние, то есть при сохранении картины полной сверхпроводимости. Если критический ток достигнут или превышен, вещество теряет сверхпроводящие свойства, в нем появляется электрическое сопротивление. Исследователи измерили, как критический ток в сверхпроводящей пленке из оксида индия зависит от величины приложенного к нему магнитного поля. Ученые пропускали ток через пленку, находящуюся в магнитном поле, значение которого было чуть меньше критического, и наблюдали, при каком значении тока в образце разрушается состояние сверхпроводимости. Подобные эксперименты проводились и раньше. Уникальность новой работы в том, что зависимость максимального сверхпроводящего тока от магнитного поля в «очень грязных» сверхпроводниках была измерена при магнитных полях, близких к критическим, и очень низких температурах. В результате оказалось, что критический уровень тока зависит от того, насколько сила магнитного поля близка к критическому значению. Зависимость эта оказалась степенной, причем степень равна 3/2. Кроме того, ученые определили, как критическое поле в пленке оксида индия зависит от ее температуры. «Глядя на результаты этих двух экспериментов, мы смогли понять, как они взаимосвязаны, — рассказывает Михаил Фейгельман. — Стабильное повышение критического магнитного поля при низких температурах в „очень грязных“ сверхпроводниках происходит из-за того, что в сверхпроводящем состоянии, которое реализуется в сильном магнитном поле, существуют тепловые флуктуации так называемых абрикосовских вихрей (квантовые вихри сверхтока, появляющиеся в сверхпроводниках под воздействием внешнего магнитного поля). И мы нашли способ, как описать эти флуктуации». Предсказания созданной авторами теории хорошо описывают полученные экспериментальные данные. «Очень грязные» сверхпроводники до охлаждения являются слабыми диэлектриками и при охлаждении проводят ток все хуже и хуже. Но по достижении некой критической температуры они скачкообразно превращаются в сверхпроводники. Это достаточно необычное сочетание качеств — обычно электрическое сопротивление меняется более плавно. Именно поэтому неупорядоченные сверхпроводники рассматривают как материал для изоляции от всевозможных внешних помех сверхпроводящих квантовых битов — элементной базы квантового компьютера. Удобнее всего «отключить» их от внешнего мира при помощи материалов с очень высокой индуктивностью. Чем она больше, тем слабее внешние помехи разрушают квантовую когерентность в квантовых битах. Индуктивность вещества повышается при уменьшении в нем плотности проводящих элементов, то есть в случае сверхпроводников — чем более они «грязные». Ранее вовлекать подобные материалы в изоляцию кубитов мешало то, что полноценного объяснения поведению грязных сверхпроводников при низких температурах не было. После выхода новой работы ситуация изменилась, и перспективы практического применения столь экзотических материалов стали заметно ближе к реальности. Источник: chrdk.ru Комментарии: |
|