Цитоскелетная теория в психиатрии |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-09-24 17:04 В последние годы в биологической психиатрии доминирует нейромедиаторная теория. Действительно, актуальность нейромедиаторной теории подтверждается большим числом биологических исследований (содержание нейромедиаторов в ткани мозга, изучение полиморфизмов генов, вовлеченных в обмен нейромедиаторов), а также клинической практикой, ведь успешное применение препаратов, действующих на систему нейротрансмиттеров предопределяет справедливость теории. Однако есть и альтернативные теории, набирающие популярность. Об одной из таких теорий доложил доктор Ил Хван Ким (Dr. Il Hwan Kim) из университета Дюка в рамках своего семинара в центре наук о здоровье университета штата Теннессии (UTHSC). Его доклад назывался “Изучение нейрональных сетей мозга, относящихся к психиатрическим симптомам” (изобр.[1]). Наверняка многие врачи и биологи, да и в целом все, кто изучал физиологию в высших учебных заведениях, слышали про белок актин. Вероятнее всего слово актин сразу ассоциируется со словосочетанием актин-миозиновый комплекс, вспоминаются нервные волокна и дикие для второкурсника теории мышечного сокращения. Кто-то вспомнит про цитоскелет – белковые структуры, которые поддерживают форму клетки такой, какой ей и следует быть. Сразу же из глубин памяти вылезут туманные микрофиламенты, тубулины и кератины. Однако если вы хорошо знакомы с нейроцитологией и нейрогистологией, то вспомните также, что актин играет важную роль в синапсообразовании: небольшие отростки дендритов (дендритные шипики) могут появляться и исчезать, помогая при этом формировать новые синапсы на своей поверхности. Именно благодаря дендритным Шипкам и синаптической динамике нервная система может эффективно обрабатывать и реализовывать информацию и поддерживать свою пластичность в целом. Формирование дендритных шипиков основано на явлении полимеризации актина, а также ветвлении актиновых структур. Как видно из рисунка [изобр.2], для ветвления актина требуется специальный комплекс белков Arp2/3. Этот комплекс “садится” на материнский актиновый филамент, и на его базе начинает расти дочерний актиновый филамент. Таким образом и формируется древообразная структура, которая создает дендритные шипики, на основе которой и держится все волшебство нервной системы. Тут уже не сложно догадаться, что если система дендритных шипиков нарушена, то можно ожидать нейро-когнитивныый дефицит, или же, по меньшей мере дисбаланс. На рисунке (изобр.[3]) показаны отростки нейронов дикого типа мыши (верхние изображения) и с прижизненно выключенным (нокаутированным) комплексом Arp2/3 (нижние изображения). Как можно заметить, существующие дендритные шипики у мутантов исчезают, а новые не появляются. Eсть исследования, которые показывают, что мутантнтные мыши, по комплексу Arp2/3 демонстрируют ненормальное локомоторное поведение (1). Более того, Arp2/3-мутантные мыши после введения антипсихотиков (галоперидол, клозапин) демонстрируют нормализацию поведения. А статья (2) обсуждает шизофрению в контексте изменения экспрессии гена Arp2/3. На рисунке (изобр.[4]) показаны данные, полученные с использованием анализа моторной активности мышей (общая длина передвижений) у мышей с интактным и инактивированным геном ArpC3 (это субъединица комплекса Arp2/3) с применением галоперидола (0.1 мг/кг, 0.2. мг/кг) и клозапина (0.5 мг/кг). Показаны три временные точки после введения антипсихотиков. В исследовании использовали Cre-LoxP систему инактивации гена, для простоты интерпретируем это как инактивированный ген (по-научному это генотип Arpc3 f/f; Camk2a-Cre). Можно сразу заметить по первым двум столбцам, что у мышей с инактивированным геном ArpC3 общая дистанция передвижений значительно больше, чем у мышей с интактным геном (примерно в 6 раз). Анализируя диаграммы дальше можно заметить, что с течением времени антипсихотические средства сокращают разницу в моторной активности между мышами с интактным и инактивированным геном. Ответ мутантных мышей на антипсихотические препараты объясняется тем, что потеря функциональной активности комплекса Arp2/3 непосредственно влияет на дофаминэргические синапсы сообщения вентральной области покрышки и черной субстанции (DA-producing VTA/SNc neurons). На данный момент нет однозначных данных, описывающих биологическую сторону психической симптоматики, но регулярно появляется информация о новых генах, которые могут вносить вклад в ее развитие. Обзор о конкондартности шизофрении описывает наследуемость шизофрении на основании близнецовых исследований. В целом сомнений в генетической природе/компоненте психической патологии остается все меньше, однако пройдет еще много лет, прежде чем в психиатрическую практику войдут диагностические системы оценок рисков и предимплантационная диагностика. Расширение понимания биологических основ психиатрии существенно увеличит рецепторный арсенал психофармакологии, позволит проводить более селективную терапию и даже откроет возможности для доманифистационной коррекции в психиатрии. Автор текста: Крат С. Источники: “Психиатрия и Нейронауки” предлагает уникальную базу данных по психофармакологии, основанную на самых современных достижениях мировой науки Copyright © 2018 Psychiatry & Neuroscience | Источник: psyandneuro.ru Комментарии: |
|