Туториал Nvidia для разработчиков: оптимизация RNN с помощью TensorRT |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-08-22 17:32 Видео демонстрирует, как настроить простую рекуррентную нейронную сеть (RNN) на основе языковой модели на уровне символов. Хотя этот образец построен с использованием C ++, вы можете реализовать его на Python с помощью TensorRT Python API. При помощи NVIDIA TensorRT вы можете быстро оптимизировать и развертывать натренированные нейронные сети для проведения инференса. TensorRT обеспечивает повышение производительности инференса до 40 раз при задержках менее 7 миллисекунд по сравнению с системами на базе CPU. Комментарии: |
|