Топ-10 инструментов Python для машинного обучения и data-science |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-08-29 00:54 Python — один из наиболее популярных языков программирования. Причина — в его универсальности, ведь это мультитул с возможностью «заточки» под самые разные нужды. Сегодня мы публикуем подборку с описанием 10 полезных для data-scientist и специалиста по ИИ инструментов.
Машинное обучение, нейросети, Big-data — всё более растущий тренд, а значит, нужно все больше специалистов. Синтаксис Python математически точный, так что его понимают не только программисты, но и все, кто связан с техническими науками, — вот почему такое количество новых инструментов создается именно на этом языке. Skillbox рекомендует: Практический курс «Python-разработчик с нуля». Напоминаем: для всех читателей «Хабра» — скидка 10 000 рублей при записи на любой курс Skillbox по промокоду «Хабр». Но хватит описывать достоинства Python, давайте наконец приступим к нашей подборке. Инструменты машинного обучения Shogun — решение с большим количеством возможностей по машинному обучению, с фокусировкой на Support Vector Machines (SVM). Написан он на С++. Shogun предлагает широкий спектр унифицированных методов machine learning, в основе которых — надежные и доступные пониманию алгоритмы. Shogun качественно задокументирован. Из недостатков можно назвать относительную сложность работы с API. Распространяется бесплатно. Keras — высокоуровневый API нейросетей, предоставляющий библиотеку глубокого обучения для Python. Это один из лучших инструментов для тех, кто начинает свой путь в качестве специалиста по машинному обучению. По сравнению с другими библиотеками Keras гораздо более понятен. С ним могут работать такие популярные фреймворки Python, как TensorFlow, CNTK или Theano. 4 основных принципа, лежащих в основе философии Keras, — дружественность пользователю, модульность, расширяемость и совместимость с Python. Из недостатков можно назвать относительно медленную скорость работы по сравнению с другими библиотеками. Scikit-Learn — open-source инструмент для дата-майнинга и анализа. Его можно использовать и в data-science. API инструмента удобный и практичный, его можно использовать для создания большого количества сервисов. Одно из главных достоинств — скорость работы: Scikit-Learn просто бьет рекорды. Главные возможности инструмента — регрессия, кластеринг, выбор модели, препроцессинг, классификация. Pattern — модуль веб-майнинга, который предоставляет возможности для сбора данных, обработки языка, машинного обучения, анализа сети и визуализаций разного рода. Он отлично задокументирован и поставляется с 50 кейсами, а также 350 юнит-тестами. И он бесплатен! Theano назван в честь древнегреческого философа и математика, давшего миру много полезного. Основные функции Theano — интеграция с NumPy, прозрачное использование ресурсов GPU, скорость и стабильность работы, самоверификация, генерация динамического С-кода. Среди недостатков можно упомянуть относительно сложный API и более медленную скорость работы, если сравнивать с другими библиотеками. Инструменты data-science SciPy — базирующаяся на Python экосистема open-source программного обеспечения для математиков, специалистов по ИТ, инженеров. В SciPy используются различные пакеты вроде NumPy, IPython, Pandas, что позволяет использовать популярные библиотеки для решения математических и научных задач. Этот инструмент — отличная возможность, если вам нужно показать данные серьезных вычислений. И он бесплатен. Dask — решение обеспечивающее возможность параллелизма данных в аналитике благодаря интеграции с такими пакетами, как NumPy, Pandas и Scikit-Learn. C Dask вы можете быстро распараллелить существующий код, изменив лишь несколько строк. Дело в том, что его DataFrame такой же, как в библиотеке Pandas, а работающий с ним NumPy имеет возможность распараллеливать задания, написанные на чистом Python. Numba — компилятор с открытым исходным кодом, который использует инфраструктуру компилятора LLVM для компиляции синтаксиса Python в машинный код. Основным преимуществом работы с Numba в приложениях для научных исследований можно назвать его скорость при использовании кода с массивами NumPy. Как и Scikit-Learn, Numba подходит для создания приложений машинного обучения. Стоит отметить, что решения на основе Numba будут особенно быстро работать на оборудовании, созданном для приложений машинного обучения или научных исследований. High-Performance Analytics Toolkit (HPAT) — compiler-based фреймворк для больших данных. Он автоматически масштабирует аналитические программы, равно как и программы машинного обучения, до уровня производительности облачных сервисов и может оптимизировать определенные функции с помощью декоратора jit. Cython — лучший выбор для работы с математическим кодом. Cython — это транслятор исходного кода на основе Pyrex, который позволяет вам легко писать C-расширения для Python. Более того, с добавлением поддержки интеграции с IPython / Jupyter код, написанный с использованием Cython, можно использовать в Jupyter при помощи встроенных аннотаций, ровно так же, как и любой другой код Python. Приведенные выше инструменты почти идеальны для ученых, программистов и всех, кто имеет отношение к машинному обучению и большим данным. И конечно, стоит помнить, что эти инструменты заточены под Python. Источник: habr.com Комментарии: |
|