Facebook займется исследованиями МРТ с помощью ИИ |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-08-25 12:05 Школа медицины при Нью-Йоркском университете планирует ускорить МРТ-сканирование как минимум в 10 раз. Поможет им в этом группа исследователей искусственного интеллекта из Facebook (FAIR) с помощью технологий машинного обучения.
Проект называется fastMRI. Медики предоставят для него датасет из 3 миллионов снимков мозга, коленей и печени, собранные с 10 тысяч пациентов, а Facebook — свои наработки по машинному обучению для тренировки алгоритма. Согласно задумке, аппарат МРТ будет собирать только часть информации, а пробелы заполнит обученная нейросеть. Приемлемые для реального использования результаты исследователи планируют опубликовать в течении года под свободной лицензией. Аппарат для МРТ воздействует на ткань электромагнитным излучением и фиксирует выделение энергии в виде цифровых данных, из которых потом формируют снимки — «двумерные срезы». Процесс может длиться от 15 минут до часа. Чем больше данных необходимо собрать, тем дольше требуется воздействие. Человеку в это время надо лежать и не двигаться. Для некоторых пациентов — например, маленьких детей, людей, страдающих клаустрофобией или испытывающих боли в лежачем положении — это может быть проблемой. Первые попытки ускорить получение снимка исследователи при Школе медицины предприняли в 2015 году. Ученые предположили, что время в аппарате можно сократить, собрав только часть данных, а оставшиеся пробелы заполнить с помощью обученного ИИ на нейросетевых алгоритмах. Аппараты МРТ в целом довольно гибкие в плане количества данных, необходимых для получения результата. Но после первых попыток, исследователи пришли к выводу, что для воссоздания качественных снимков необходимо даже меньше данных, чем они предполагали. Сложность в том, что когда при обработке фото и видео нейросетевые алгоритмы заполняют похожим образом пробелы, дорисовывая пиксели на основе полученных данных, допущения и отклонения не критичны, по крайней мере в вопросах жизни и смерти. Но в анализе снимков МРТ на диагноз может повлиять каждый миллиметр. Слева на этом изображении полный набор исходных данных, собранных МРТ. А справа снимок колена, который из них получен. А на этом — частичный набор данных и снимок колена, полученный с помощью нейросетевых алгоритмов на данном этапе. Помимо вопросов с точностью воссоздания, проект поднимает некоторые этические проблемы. Решением похожих задач с компьютерным зрением — только в других сферах — занимались инженеры Facebook. Они говорят, что участие в этом проекте — хороший способ для них применить технологии на практике. Но сбор персональных данных компаниями, которые зарабатывают на их монетизации — в последнее время особо чувствительный вопрос. Тем более, если речь идет о медицинских данных. Исследователи заявляют, что в датасетах нет информации о личностях пациентов, имен и медицинских сведений — только сами снимки и исходные данные, из которых эти снимки получены. Представители Facebook также утверждают, что в проекте не использованы данные, которые собирает компания сама. Как сообщил изданию VentureBeat представитель Facebook, результатов стоит ждать в течении года. Как только будет проделан необходимый прогресс, исследователи выложат в общий доступ все модели, метрики и датасеты, на которых обучали ИИ для того, чтобы их могли использовать другие клиники. Источник: habr.com Комментарии: |
|