Андрей Бояров — Deep Learning: Распознавание сцен и достопримечательностей на изображениях |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-08-08 15:19 алгоритмы машинного обучения, реализация нейронной сети, распознавание образов
Распознавание сцен (scene recognition) является одной из областей машинного зрения, которая активно применяется, например, в поиске по изображениям. Задача распознавания сцен на картинках является более сложной задачей, чем относительно хорошо изученная и используемая в индустрии задача распознавания объектов. Главная причина заключается в том, что сцена – более комплексное и менее формализуемое понятие: достаточно сложно выделить признаки, которые описывают такие понятия, как ресторан, кухня, спортивное мероприятие и т.д. Кроме того, сценой является все изображение, а не какая-то его часть, в отличие от объектов.
В данном докладе пойдет речь о построении системы для решения задачи scene recognition при помощи state-of-the-art подхода, основанного на глубоких сверточных нейронных сетях. Задача распознавания достопримечательностей вытекает из распознавания сцен. Здесь нам нужно среди всех изображений сцен выделить те, на которых присутствуют разнообразные известные места: дворцы, памятники, площади, храмы и т.д. Однако при решении этой задачи важно обеспечить низкий уровень ложных срабатываний. В докладе будет рассмотрено решение задачи распознавания достопримечательностей на основе нейронной сети для scene recognition. Комментарии: |
|