Новые ноги не помешали роботу учиться ходить |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-07-01 10:15 Инженеры из Disney Research разработали алгоритм для роботов, позволяющий им самостоятельно адаптироваться к изменениям конфигурации. С его помощью робот-паук смог научиться ходить вперед после того, как инженеры присоеденили к нему новые ноги. Разработка была представлена на конференции International Conference on Ubiquitous Robots 2018. Некоторые животные умеют не только учиться ходить после рождения, но и довольно быстро адаптировать свои движения даже после потери конечностей. Например, такой способностью обладают сенокосцы — в случае, если их схватил хищник, они могут отбросить конечность и впоследствии практически полностью восстановить свою скорость передвижения и способность к маневрированию. Инженеры из Disney Research под руководством Кацу Яманэ (Katsu Yamane) из Disney Research решили научить роботов подстраивать свои навыки ходьбы под новые конфигурации, но не для борьбы с хищниками, а для того, чтобы облегчить создание алгоритмов для сложных роботов с множеством ног. В своей работе авторы использовали разработанного в прошлом году шестиногого робота Snapbot. Каждая его нога отсоединяется от корпуса, причем предусмотрено три немного различающихся вида ног. В результате робот может иметь 700 различных конфигураций. В случае с одинаковыми и симметрично установленными ногами подобрать оптимальную походку вручную не так сложно, но для асимметричных модификаций это гораздо труднее, поэтому инженеры решили, что легче научить робота делать это самостоятельно.
Разработчики выбрали для этого метод обучения с подкреплением, при котором обучаемый алгоритм получает отклик от среды, соответствующий успешности его действий. В результате, алгоритм постепенно вырабатывает стратегию, при которой он получает от среды максимальную награду. Поскольку в случае сложной морфологии роботу сложно учиться даже таким способом, инженеры решили немного облегчить задачу — использовать навык, выученный для простой конфигурации, в качестве исходных данных при обучении хождению с более сложной конфигурацией. Изначально робот учился ходить с одной ногой, а при обучении ходьбе с несколькими ногами разработчики дублировали выученный навык для каждой ноги. В прошлом году группа инженеров из Массачусетского технологического института разработала систему, позволяющую переносить выученные навыки между роботами разной конструкции. Например, авторы смогли успешно передать гуманоидному роботу Atlas навыки, полученные роботом Optimus. Григорий Копиев Источник: nplus1.ru Комментарии: |
|