Нейросеть научилась прогнозировать свойства органических соединений |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-07-19 22:49 Ученые из России, Эстонии и Великобритании создали новый метод прогнозирования важного свойства органических молекул – фактора биоконцентрации. Новый подход, основанный на классических моделях физико-химических взаимодействий растворителя с растворяемым веществом и современных методах машинного обучения, позволяет предсказывать сложные свойства веществ, используя минимальный набор исходных данных. Фактор биоконцентрации характеризует степень накопления вещества в живых организмах, и является одним из важнейших свойств органических веществ, используемых при оценке безопасности того или иного химического соединения. Оценить этот параметр на практике можно, добавив исследуемое вещество, к примеру, в емкость с живой рыбой и спустя некоторое время померив его концентрацию в рыбе и в окружающей воде. Но как оценить фактор биоконцентрации чисто теоретически, без проведения дополнительных экспериментов? Первый способ – это сгенерировать множество параметров (дескрипторов), описывающих молекулы, и построить на основе этих данных математическую модель. Модель может получиться точной, но плохо интерпретируемой за счет большого числа параметров. Что еще хуже, модель может работать неудовлетворительно для соединений, слишком отличающихся от представленных в обучающей выборке. Второй подход основан на молекулярной теории жидкости, описывающей поведение веществ в растворах. Однако так как биоконцентрация – это сложный параметр, зависящий от множества факторов, то используя физико-химическую теорию напрямую предсказать биоконцентрацию тоже не получится. Ученые из Сколтеха, Университета Тарту (Эстония) и Университета Стратклайда (Великобритания) под руководством профессора Сколтеха Максима Федорова разработали гибридный метод предсказания фактора биоконцентрации. Cначала они проводят физико-химические расчеты, на основе которых определяют трехмерные плотности водорода и кислорода вокруг изучаемой молекулы, а потом применяют к этим данным 3D сверточные нейронные сети, технологию уже успешно используемую для распознавания изображений. Данный подход демонстрирует, что для описания сложных свойств органических веществ достаточно небольшого объёма исходной информации. Источник: iopscience.iop.org Комментарии: |
|