Google создала ИИ-ускоритель для чайников, холодильников, светофоров и прочего

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Как известно, компания Google самостоятельно разрабатывает заказные БИС или ASIC для ускорителей Tensor Processing Unit (TPU) по работе с моделями машинного обучения (ML). В компании делают акцент на матричные или тензорные вычисления. До сих пор компания реализовывала проекты по ускорению моделей с помощью фреймворка TensorFlow на базе центров по обработке данных. С настоящего времени Google собирается перенести задачи по принятию решений в конечные (периферийные) устройства масштаба вещей с подключением к Интернету. Иначе говоря, вооружить миниатюрные датчики и модули электронными «мозгами», которые в масштабе реального времени смогут принимать то или иное решение.

Google ASIC Edge TPU

Google ASIC Edge TPU

Для датчиков и модулей IoT компания разработала ASIC Edge TPU миниатюрных размеров. О габаритах чипа можно судить по фотографии выше, где он размещён на 19-мм монете в один цент США. При проектировании ускорителя акцент был сделан на гипернизкое потребление, поскольку датчики и модули вещей с подключением к Интернету в массе будут располагать только батарейным питанием. Разработка отвечает трём требованиям: максимальным соотношением производительность на ватт, максимальным соотношением производительность на доллар и, конечно же, решение должно быть как можно меньше по размерам.

Модель работы «двухфакторной» системы ИИ по обучению моделей и принятию решений

Модель работы «двухфакторной» системы ИИ по обучению моделей и принятию решений

По понятным причинам столь миниатюрный чип не способен обучаться моделям машинного обучения. Поэтому Google реализовала проект в виде двух ступеней. Обучаться ML будут удалённые центры по обработке данных. Ускоритель Edge TPU в конечных устройствах будет оперировать обученными моделями и принимать решения на базе обмена с удалёнными базами. Сфера использования такого тандема, уверены в Google, предельно широка. Датчики на местах моментально смогут определять брак в изделиях на заводских конвейерах, подсказывать владельцам магазинов о скором исчезновении товаров на полках, регулировать движение транспорта, включая автопилоты и, в общем случае, управлять процессами, в которых всегда что-то может пойти не так.

Набор для разрабочиков с Google Edge TPU

Набор для разработчиков с Google Edge TPU

С октября текущего года компания начнёт распространять набор для разработчиков с ускорителями Edge TPU. Набор включает модуль SOM (system on module), который содержит Google Edge TPU, процессор NXP, Wi-Fi и чип безопасности Microchip. Набор уже можно заказать. Цена вопроса не раскрывается.


Источник: 3dnews.ru

Комментарии: