Google представила микропроцессор для алгоритмов машинного обучения |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-07-26 19:34 Компания Google представила сопроцессор Edge TPU, предназначенный для аппаратного ускорения работы натренированных нейросетевых моделей. Инженеры компании также разработали два готовых устройства на базе процессора — одноплатный компьютер, а также USB-модуль для подключения к другим компьютерам. Поскольку обучение нейросетевых алгоритмов требует больших вычислительных ресурсов, часто этот этап проводят на облачных или локальных серверах, которые позволяют быстро тренировать алгоритм на большом объеме данных. Но даже применение уже обученной нейросетевой модели на устройствах пользователей может представлять собой проблему. С одной стороны, устройства не всегда подключены к интернету и могут передавать обработку данных на облачные сервера, а с другой, многие распространенные компьютеры не обладают достаточной мощностью для того, чтобы проводить обработку данных нейросетевыми алгоритмами в реальном времени. Из-за этого многие технологические компании стали разрабатывать специализированные вычислительные устройства для аппаратного ускорения работы нейросетевых алгоритмов. Google также занимается разработкой подобных устройств. На конференции I/O в 2016 году компания представила первое поколение своего тензорного процессора (TPU), а на двух последующих конференциях представляла его новые версии. Google использует их только в своем облачном сервисе, предназначенном для обучения и выполнения нейросетевых алгоритмов. Теперь компания представила отдельный сопроцессор Edge TPU для аппаратного ускорения уже обученных алгоритмов в конечных устройствах. Он представляет собой интегральную схему специального назначения (ASIC), оптимизированную для эффективного выполнения нейросетевых алгоритмов. Компания не раскрывает технических подробностей сопроцессора, но в качестве примера рассказала, что он сможет в реальном времени проводить обработку видео высокого разрешения с частотой 30 кадров в секунду, используя для этого несколько часто применяемых нейросетевых моделей. В качестве основного предназначения сопроцессора Google видит умные датчики, которые смогут не только собирать данные для передачи их более мощному устройству, но и самостоятельно проводить первичную обработку и принимать решения. Оба устройства предназначены для работы с фреймворком машинного обучения TensorFlow Lite, разработанным Google для выполнения нейросетевых алгоритмов на мобильных устройствах. Также они поддерживают операционные системы Linux и Android Things. Устройства разработаны в рамках проекта AIY, ориентированного на любительские проекты с использованием машинного обучения. Ранее компания представила два первых устройства в этом проекте — картонные наборы для распознавания голосовых команд и распознавания образов с помощью камеры. Григорий Копиев Источник: nplus1.ru Комментарии: |
|