Google представила инструменты для машинного обучения в BigQuery |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-07-29 12:05 Google анонсировала запуск бета-версии инструмента для работы с моделями машинного обучения BigQuery ML. Создавать и запускать модели можно на структурированных или полуструктурированных наборах данных внутри BigQuery, используя стандартные SQL-запросы. Возможности BigQuery ML — набор простых расширений языка SQL, который позволяет использовать основные возможности машинного обучения, например, для предсказательной аналитики. Платформа поддерживает линейную регрессию и бинарную логистическую регрессию. Для работы с BigQuery ML можно использовать веб-интерфейс BigQuery, инструмент командной строки Операторы и функции Платформа работает с оператором Градиентный спуск BigQuery предназначен для эффективного сканирования больших наборов данных, поэтому платформа основана на методе пакетного градиентного спуска. Хотя стохастический градиентный спуск более распространен в современных широкомасштабных системах машинного обучения, пакетный вариант имеет практические преимущества. Например, он нечувствителен к упорядочению и разбиению данных на диске и требует менее тонкой настройки для стабильной работы. Инструмент также поддерживает регуляризацию и предобуславливание. В марте 2018 года Google запустила бесплатный курс по машинному обучению из 25 уроков с более чем 40 заданиями. Лекции ведут исследователи корпорации, объясняя принципы машинного обучения на реальных примерах. Источник: tproger.ru Комментарии: |
|