История соревнований искусственного интеллекта и человека: кто кого |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-06-04 00:00 История соревнований искусственного интеллекта и человека: кто кого
Люди проигрывают искусственному интеллекту на собственной территории — компьютеры уже выигрывают у нас в шахматы, го, покер и даже Dota 2. Мы составили краткий обзор таких противостояний и попробовали разобраться, какие прикладные задачи могут решать игровые алгоритмы в будущем. В 1914 году испанский инженер и математик Леонардо Торрес-и-Кеведо, который изобрел одну из первых систем радиоуправления, представил шахматный автомат. Он был достаточно примитивным и умел разыгрывать только эндшпиль — финальную стадию партии — но ни один из мастеров того времени не смог выиграть у автомата Торреса. Начавшаяся в том же году Первая, а вскоре после нее и Вторая мировые войны остановили дальнейшие разработки. Следующий важный этап для искусственного интеллекта наступил только в 1955 году — тогда и появился сам термин «искусственный интеллект». Его придумал американский ученый Джон Маккарти, а через три года он создал язык программирования Lisp, который стал основным в работе с ИИ. В 1956 году другой инженер Артур Сэмюэл создает первый в мире самообучающийся компьютер, который играет в шашки. Сэмюэл выбрал именно шашки из-за элементарных правил, которые при этом требуют определенной стратегии. Компьютер обучался на простых гидах по игре, которые можно было купить в магазине. В них описывались сотни партий с хорошими и плохими ходами. Через три года Сэмюэл ввел понятие машинного обучения. Интересный факт: в 1966 году Джозеф Вейценбаум представил Элизу, первого в истории чат-бота. Элиза могла говорить на английском на любые темы. Вейценбаум разработал ее, чтобы сымитировать прием у психотерапевта. Он специально выбрал сложную ситуацию, в которой многое опирается на умение слушать и распознавать главное в репликах собеседника — компьютер того времени этого не мог. Разработчик таким образом хотел показать, насколько ненатуральным будет общение человека и компьютера, но при тестах оказалось, что люди испытывали в разговоре с Элизой чувства и эмоции, как с полноценным собеседником. Первые проигрыши людей В 1985 году университет Карнеги-Меллон начал разработку ChipTest, компьютера для игры в шахматы. В 1988 к проекту присоединилась IBM и прототип переименовали в Deep Thought. Через год его решили проверить в деле и пригласили Гарри Каспарова, который без труда победил в обеих играх. В 1995 IBM представила Deep Thought II, который позже назвали Deep Blue, сделав отсылку к прозвищу компании, Big Blue. Через год состоялся первый матч Каспарова и улучшенного компьютера. Человек снова выиграл: в шести партиях Каспаров три раза победил и один раз проиграл, два матча закончились вничью. Еще через год, в мае 1997, сильно улучшенный Deep Blue одержал в ответном матче две победы, один раз проиграл и трижды сыграл вничью, став первым компьютером, выигравшим у действующего чемпиона мира по шахматам. Уже в начале 2000-х компьютеры стабильно выигрывали у мировых чемпионов, и шахматы стали первой игрой, в которой люди уступили компьютерам. ИИ для сложных игр Разработчики искусственного интеллекта начали искать новый вызов в более сложных и непредсказуемых играх, для которых нужны более комплексные алгоритмы. После победы Deep Blue астрофизик из университета Принстона заявил, что «пройдет 100 лет перед тем, как компьютер сможет обыграть человека в го — может, даже больше». Ученые приняли вызов и начали разрабатывать машины для этой игры с простыми правилами, в которой тем не менее очень сложно стать мастером. Первые компьютеры, которые действительно могли составить конкуренцию человеку, появились только в этом десятилетии. В 2014 году Google DeepMind представила алгоритм AlphaGo, который два года соревновался с людьми на равных, но одержал первую значимую победу только в октябре 2015, одолев чемпиона Европы. Через год на популярном азиатском сервере Tygem, где играют и мировые чемпионы, появился пользователь под ником Master. За несколько дней он провел 60 матчей и ни разу не потерпел поражения, чем вызвал возмущения и подозрения в нечестной игре. 4 января 2017 года Google раскрыла, что все это время под ником скрывалась улучшенная версия AlphaGo. В мае 2017 AlphaGo — все тот же, который прославился в сети под ником Master — сразился с Кэ Цзе, первым игроком го в мировом рейтинге, и победил в трех матчах из трех, а уже в октябре Google DeepMind выпустила версию, которая была мощнее Master. AlphaGo Zero самообучался вообще без участия человека, просто бесконечно играя сам с собой. Через 21 день он достиг уровня Master, а через 40 уже был лучше всех предыдущих версий. В декабре 2017 вышел AlphaZero, еще более мощный вариант AlphaGo Zero. Он смог стать лучше предшественника за 8 часов, одновременно достигнув уровня гроссмейстера в шахматах. Так го стала второй игрой, в которой люди больше не могут выиграть. Искусственный блеф Го и шахматы подчиняются строгим правилам, и тренировка искусственного интеллекта в них — дело времени. Но есть игры, в которых человеческий фактор выходит на первый план. Например, покер — во многом психологическая игра, построенная на эмоциях, неверабальной коммуникации, умении блефовать и распознавать блеф. В 2017 году, после более чем 10 лет попыток и неудач, две команды независимо друг от друга разработали свои модели ИИ, способные обыграть профессионалов в покер. Университет Альберты представил DeepStack, нейросеть, обладающую искусственной формой интуиции, а исследователи уже знакомого университета Карнеги-Меллон показали Libratus AI. Нейросеть за 20 дней провела 120 тысяч игр против профессионалов, которые собирались каждый вечер, чтобы обсудить возможные лазейки и недоработки в Libratus. Каждый игровой день анализировала и нейросеть, совершенствуясь по его итогам. Меньше чем за месяц Libratus выиграла у профессионалов $1,7 млн (пока что виртуальных), а один из участников эксперимента так описал свои впечатления: «Это как играть с кем-то, кто видит все твои карты. Я не обвиняю нейросеть в нечестной игре, просто она действительно настолько хороша». Илон Маск и Dota 2 В 2015 году Илон Маск и Сэм Альтман, президент Y Combinator, основали компанию OpenAI, чтобы создать открытый и дружественный искусственный интеллект. В 2017 году в рамках эксперимента команда разработчиков решила натренировать свою нейросеть в Dota 2 — игре, в которой две команды по пять человек сражаются друг с другом, используя множество комбинаций более сотни героев. У каждого из них есть свой набор навыков, а игроки могут собирать предметы для усиления персонажа. Это крупнейшая игра в современном киберспорте. За две недели нейросеть смогла обучиться и победить нескольких лучших игроков мира в режиме один на один, и сейчас ее создатели готовятся выпустить версию для основного режима, пять на пять. Другие победы В начале 2018 алгоритмы от Alibaba и Microsoft превзошли человека в тесте на понимание прочитанного текста. В марте 2018 года небольшой робот собрал кубик Рубика за 0,38 секунды. Рекорд среди людей — 4,69 секунды. В мае 2018 искусственный интеллект стал лучше людей распознавать рак кожи. Что теперь По данным опроса более чем 350 экспертов в области искусственного интеллекта, скоро алгоритмы смогут победить нас в любой игре, через 10 лет научатся водить лучше нас, а к 2050 году будут проводить операции точнее нас. Сами же исследователи, создав нейросети, которые за несколько дней достигают сверхчеловеческих способностей в играх, теперь пытаются найти им применение в реальной жизни. Google DeepMind использует AlphaGo Zero для исследования сворачивания белка, пытаясь найти лекарство от болезней Альцгеймера и Паркинсона. «Наша конечная цель — использовать прорывы вроде AlphaGo для решения всех видов насущных проблем в реальном мире», — говорит Демис Хассабис, СЕО компании. «Если такие алгоритмы можно применить и в других ситуациях, как, например, изучение сворачивания белка, снижение уровня потребляемой энергии, или создание новых революционных материалов, то это сильно продвинет вперед все человечество и положительно скажется на наших жизнях». Искусственный интеллект активно идет и в бизнес — не только в лабораториях Google, но и в российских компаниях: «Тинькофф» использует искусственный интеллект для одобрения кредитов, а «Газпромбанк» распознает улыбки клиентов с помощью компьютерного зрения. Источник: m.vk.com Комментарии: |
|