Новый многозадачный ИИ DeepMind учится с рекордной скоростью

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2018-05-10 19:10

ИИ проекты

Британская компания искусственного интеллекта DeepMind, подразделение Google, разработала новый метод обучения нейронных сетей, сочетающий передовые алгоритмы и олдскульные видеоигры. Новая система IMPALA одновременно выполняет несколько задач — в данном случае, играет в 57 игр Atari — и обменивается между собой опытом.

Разработчики нейросети AlphaGo, неоднократно побеждавшей человека в го, верят, что машины могут учиться так же, как люди. При помощи тренировочной системы DMLab-30, которая построена на основе шутера Quake III и аркадных игр Atari команда разработала новую архитектуру IMPALA (Importance Weighted Actor-Learner Architectures).

IMPALA пересылает информацию, полученную в ходе обучения «действующими лицами», группе «учащихся». Система не только проходит игры в 10 раз эффективнее, чем другие модели, но и играет одновременно во множество видеоигр.

Одними из главных противников разработчиков ИИ является время и вычислительная мощность, которые необходимы для обучения нейронной сети. Автономным машинам нужны правила, по которым они могли бы экспериментировать и искать пути решения задач. Поскольку мы не можем построить роботов и просто выпустить их на волю учиться, существуют симуляции и глубокое обучение с подкреплением.

Для того чтобы современные нейронные сети могли чему-то научиться, им приходится обрабатывать огромный объем информации, в данном случае — миллиарды кадров. И чем быстрее они это делают, тем меньше времени уходит на обучение.

Комментарии: