Нейросеть научилась реалистично переносить мимику и движения головы |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-05-25 12:05 Американские исследователи создали нейросеть для реалистичного переноса мимики людей между видеозаписями. В отличие от предыдущих подобных разработок, она изменяет множество параметров головы человека: ее наклон, форму рта, направление взгляда и другие. Работа будет представлена на конференции SIGGRAPH 2018. В последние несколько лет появилось большое количество работ и сервисов, использующих нейросети для переноса стиля или деталей между разными изображениями. Но некоторые исследователи занимаются более сложной задачей — реалистичным переносом движений и мимики между двумя видеозаписями людей. В этой области уже есть достаточно серьезные разработки, однако, все они обладают серьезными недостатками и не могут полноценно переносить мимику между лицами. Например, ученые из Вашингтонского университета научились переносить выражение лица и его наклон на объемную модель лица другого человека, а также реалистично вставлять речь в видеоролик, изменяя положение губ на видео. Другие исследователи научились переносить большую часть мимики на реальный ролик с другим человеком, но их алгоритм не учитывает положение головы на ролике, с которого производится перенос. Теперь эти исследователи из Института информатики Общества Макса Планка и других немецких институтов объединились с коллегами из Франции, Великобритании и США и создали более совершенную версию алгоритма, позволяющую реалистично переносить поведение человека из одного видео в другое. В качестве исходных данных программа принимает два видеоролика, на которых крупным планом заснят человек. Затем из обоих роликов извлекаются основные параметры лиц — выражение лица, описываемое множеством признаков, положение головы и направление взгляда. После этого модели лица из целевого ролика присваиваются параметры движений модели из исходного ролика-образца, хотя само лицо берется из ролика с человеком, которому присваиваются новые эмоции. Затем алгоритм создает фотореалистичные рендеры целевого лица с новыми параметрами и эти рендеры передаются порождающей нейросети, которая превращает рендеры в реалистичный ролик.
Авторы провели исследование на добровольцах и показали, что людям сложно понять, что показываемое им видео на самом деле создано нейросетью на основе ролика с другим человеком. Разработчики также рассказали о недостатках метода. Например, эффективность алгоритма, как и других нейросетей, сильно зависит от тренировочных данных, и, если он сталкивается с незнакомым ему выражением лица, на конечном видео могут появиться заметные артефакты вместо реалистично перенесенной мимики. Поскольку подобные технологии, позволяющие создавать реалистичные ролики с другими людьми, вызывают опасения в обществе, недавно группа ученых, в которую входят два автора новой работы, создала алгоритм для выявления подобных подделок. Он может эффективно распознавать подмену мимики или самих лиц на видеороликах, причем даже сжатых. Григорий Копиев Источник: nplus1.ru Комментарии: |
|