Машинное обучение увидело цикличность землетрясений от работы геотермальных станций |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-05-24 23:33 Методы машинного обучения помогли обнаружить цикличность в сейсмической активности, вызванной работой геотермальных электростанций. В статье в Science Advances ученые пишут, что основная причина сезонных изменений количества и мощности землетрясений — разница в количестве закачанной в скважины электростанций воды в разные месяцы. Одна из наиболее распространенных техногенных причин землетрясений, наряду с гидроразрывом пластов при добыче нефти и газа, — работа геотермальных электростанций. Технология работы этих станций подразумевает использование двух скважин, в одну из которых закачивается холодная вода, а из другой — перегретая вода из подземных источников поднимается наружу. Из-за гидравлического или теплового воздействия на горные породы в процессе закачки жидкости в скважины в области вокруг геотермальных станций нередко происходят небольшие землетрясения. Обычно их магнитуда не превышает 2, однако иногда эти землетрясения бывают и мощнее. Например, магнитуда самого мощного землетрясения в Европе, однозначно вызванного именно работой геотермальной станции, достигала 3,4. Совсем недавно геологи подтвердили, что прошлогоднее мощное землетрясение в Южной Корее магнитудой 5,4 также связано с запуском геотермальной электростанции. Процесс обработки каждого сейсмического сигнала состоял из трех этапов. Сначала сейсмический сигнал преобразовывался в спектрограмму, которая с помощью метода разложения ненулевых матриц представлялась в виде двух матриц: одной — с полным набором возможных частотных компонент в сигнале, и второй — с коэффициентами активации для каждой из компонент. Из матриц второго типа ученые выделяли только главные компоненты, которые характерны для всего набора сигналов. Полученные таким образом матрицы коэффициентов активации геологи использовали для обучения алгоритма, основанного на скрытой марковской модели. В результате данные представлялись в виде последовательности скрытых состояний, описывающих развитие сейсмического сигнала с течением времени, и из каждой спектрограммы при этом формировался свой частотно-временной идентификатор, описывающий развитие конкретного землетрясения с помощью довольно небольшого числа параметров. Чтобы выделить какие-то закономерности при развитии землетрясений, связывающие географическое положение эпицентра, магнитуду и время, все полученные идентификаторы затем с помощью метода k-средних собирались в несколько кластеров, внутри каждого из которых для землетрясений были характерны общие черты. По словам ученых, полученные ими результаты однозначно связывают распространение акустического сигнала во время землетрясения с процессами закачки в скважины станций воды и изменением термомеханического состояния породы. Авторы исследования отмечают, что в будущем подобные методы можно будет использовать для регистрации и изучения незначительных изменений сейсмических характеристик горных пород, вызванных как тектоническими, так и техногенными причинами. Стоит отметить, что методы машинного обучения ученые предлагают использовать не только для описания и объяснения землетрясений, но и для их прогнозирования. Например, недавно американские и британские ученые именно с помощью машинного обучения при анализе искусственных землетрясений в лабораторных условиях установили, что в качестве краткосрочного прогностического признака подземных толчков можно использовать шум мягких пород. Александр Дубов Источник: nplus1.ru Комментарии:
Lex, 2018-05-25 17:39:30
Забавно до дрожи )) Нужно еще такое же исследование произвести по гидроразрыву. |
|