Дрон и нейросеть помогут определить видовой состав леса

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Masanori Onishi1, Takeshi Ise / arXiv.org, 2018

Японские исследователи разработали метод полуавтоматического распознавания типов деревьев на снимках, сделанных мультикоптером во время полета над лесом. Несмотря на то, что авторы использовали серийный дрон с обычной камерой и без дополнительного оборудования, алгоритм научился различать шесть видов деревьев со средней точностью 89 процентов, сообщается в препринте на arXiv.org.

Наблюдение за деревьями в лесах важно прежде всего для исследователей, следящих за биоразнообразием и распространением инвазивных видов растений. Поскольку беспилотные летательные аппараты перемещаются над лесом гораздо быстрее, чем люди по лесу, некоторые исследователи используют их для быстрого сбора данных с большой площади. Но обычно для этого используется аэрофотосъемка с помощью мультиспектральных камер или лидаров. Таким образом можно получать данные для больших массивов, но это требует больших затрат на оборудование, а разрешение изображений получается низким.

Масанори Ониси (Masanori Onishi) и Такеши Исе (Takeshi Ise) из Киотского Университета решили использовать для отслеживания типов деревьев гораздо более дешевый источник данных — квадрокоптер DJI Phantom 4 со встроенной камерой. Дрон летал над лесом площадью около 47 гектаров в пригороде Киото и делал снимки, автономно передвигаясь по заданному маршруту на высоте 80 метров. После полета исследователи объединили снятые фотографии в ортографическую проекцию, а также создали на их основе цифровую модель рельефа.

На основе этих данных исследователи с помощью автоматизированной программы провели сегментацию ортографического снимка, оставив на нем только кроны деревьев. Затем они создали семь классов объектов: шесть типов или видов деревьев, например, вечнозеленое широколистное дерево или сосна веймутова (Pinus strobus), а также один класс для всех остальных объектов, таких как земля между деревьями или здания.

Примеры изображений для каждого класса

Masanori Onishi1, Takeshi Ise / arXiv.org, 2018

После этого исследователи разбили изображение на отдельные объекты, создав таким образом набор данных для алгоритма машинного обучения. В качестве алгоритма авторы выбрали сверточную нейросеть GoogLeNet. Натренировав нейросеть на части набора данных исследователи получили среднюю точность распознавания 89 процентов, а для некоторых типов деревьев она достигала 96 процентов.

Ранее финские исследователи научились автоматически определять вид дерева по данным лазерного сканирования. Во время испытаний система распознавала три вида деревьев с точностью до 95 процентов. А швейцарские инженеры превратили дрон в автоматизированную систему обследования полостей в деревьях. За счет нескольких датчиков он самостоятельно определяет положение дупла на стволе, после чего подлетает вплотную к стволу и вводит внутрь полости манипулятор со стереокамерой на конце.

Григорий Копиев


Источник: nplus1.ru

Комментарии: