Каким будет Web 3.0: блокчейн-маркетплейсы для машинного обучения |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-04-05 11:34 Как создать мощнейший искусственный интеллект? Один из способов — использовать модели машинного обучения с данными, которые распространяются через маркетплейсы, основанные на блокчейне. Зачем здесь блокчейн? Именно с его помощью в будущем мы можем ожидать появления открытых электронных бирж, где каждый сможет продавать свои данные, не нарушая конфиденциальность. А разработчики — выбирать и приобретать наиболее полезную информацию для своих алгоритмов. В этом посте мы расскажем о развитии и перспективах таких площадок.
Сегодня основные элементы подобных систем только формируются. Простые начальные версии подобных решений внушают надежду на успех. Эти торговые площадки обеспечат переход от нынешней эпохи монопольного владения данными Web 2.0 к Web 3.0 — открытой конкуренции за данные и алгоритмы с возможностью непосредственной монетизации. Возникновение идеи Идея такой площадки возникла у меня в 2015 году после разговора с Ричардом из хедж-фонда Numerai. Они проводили конкурс на разработку модели фондового рынка и отправляли зашифрованные рыночные данные любому специалисту, желающему участвовать в нем. В итоге Numerai объединяет лучшие модели в «метамодель», продает ее и выплачивает вознаграждение тем специалистам, чьи модели работают эффективно. Проектирование В качестве примера давайте попробуем создать полностью децентрализованную систему для торговли криптовалютами на децентрализованных биржах. Вот одна из возможных схем: Модели. Разработчики моделей выбирают, какие данные использовать, и создают модели. Обучение проводится с использованием безопасного метода вычислений, который позволяет обучать модели, не раскрывая используемые данные. Модели выставляются на биржу так же, как и данные. Метамодели. Метамодель создается на основе алгоритма, который учитывает биржевую цену каждой модели. Создание метамодели необязательно — некоторые модели используются и без объединения в метамодель. Смарт-контракт использует метамодель в электронных торгах посредством децентрализованных биржевых механизмов (on-chain транзакции). Распределение прибыли / убытков. По прошествии некоторого времени торги дают прибыль или убыток, которые делятся между разработчиками метамодели, в зависимости от их вклада в ее усовершенствование. Модели, которые оказали отрицательное влияние на метамодель, теряют привлеченные средства полностью либо частично. И поставщики данных для этой модели тоже терпят некоторые убытки. Верификация вычислений. Вычисления на каждом этапе выполняются двумя способами. Либо централизованно, но с возможностью верификации и опротестования через механизмы типа Truebit. Либо децентрализовано, с использованием протокола конфиденциального вычисления. Хостинг. Данные и модели размещаются либо на IPFS, либо на нодах в защищенной системе конфиденциального вычисления с большим количеством участников. On-chain хранилище в этом случае будет слишком дорогим. Почему это будет эффективно и производительно? Перечислим основные преимущества такой системы:
Конфиденциальность системы В дополнение к перечисленному, важнейшим свойством является конфиденциальность. Гарантия конфиденциальности позволяет рядовым пользователям спокойно предоставлять любые личные данные. А также препятствовать утрате экономической ценности как данных, так и моделей. Если оставить данные и модели незашифрованными в открытом доступе, они будут скопированы бесплатно и использованы другими лицами, которые не вносят какого-либо вклада в общее дело («эффект безбилетника»). Защищенные вычисления Безопасные методы вычислений позволяют обучать модели без раскрытия самих данных. В настоящее время используются и исследуются три основных вида защищенных вычислений: гомоморфное шифрование (HE), протокол конфиденциального вычисления (MPC) и доказательство с нулевым разглашением (ZKP). Для машинного обучения с использованием личных данных сегодня чаще всего используется MPC, поскольку HE обычно работает слишком медленно, а как применять для машинного обучения ZKP — пока неясно. Методы безопасных вычислений — это актуальнейшая тема современных компьютерных исследований. Такие алгоритмы, как правило, требуют гораздо больше времени, чем обычные вычисления, и становятся бутылочным горлышком системы. Но в последние годы они были заметно усовершенствованы. «Идеальная рекомендательная система» Чтобы проиллюстрировать потенциал машинного обучения на частных данных, представьте себе приложение под названием «Идеальная рекомендательная система». Оно следит за всем, что вы делаете на своих устройствах: анализирует все посещаемые сайты, все действия в приложениях, просмотренные картинки на телефоне, данные о местоположении, историю расходов, информацию с носимых датчиков, текстовые сообщения, данные с камер в вашем доме и на ваших будущих очках дополненной реальности. Эта информация позволит приложению давать вам рекомендации: какой следующий веб-сайт посетить, какую статью прочитать, какую песню послушать или какой товар купить. Реализованные подходы Говорить о полноценных системах такого рода еще рано. На данный момент мало у кого уже есть что-то работающее, и большинство идет к таким системам постепенно.
Специалисты по анализу данных должны использовать Numeraire в качестве оболочки, тем самым подтверждая собственный интерес и стимулируя будущую производительность. И всё же на текущий момент Numerai распространяет данные централизованно, так что самая важная характеристика системы все еще не реализована. На данный момент успешный маркетплейс данных на основе блокчейна еще не создан. Первой попыткой разработать такую систему, хотя бы в общих чертах, стал The Ocean. Другие начинают с постройки безопасных вычислительных сетей. В рамках проекта Openmined ведется работа по созданию многопользовательской вычислительной сети для обучения моделей машинного обучения на базе Unity, которая может работать на любом устройстве, включая игровые консоли (аналогичные Folding at Home). Впоследствии планируется расширить эту систему до протокола конфиденциального вычисления. Аналогичного подхода придерживается компания Enigma. В результате этих работ было бы здорово получить метамодели, которые предоставляли бы совладельцам — поставщикам данных и разработчикам моделей — права собственности в объеме, пропорциональном их вкладу в совершенствование метамодели. Модели были бы токенизированы и могли бы со временем приносить доход, а те, кто обучал их, могли бы даже управлять ими. Это был бы своего рода роевой интеллект, находящийся в совместной собственности. Из всего, что я пока видел, ближе всего к такой системе подошел проект Openmined, если верить видеоролику о нем. Что может сработать быстрее? Не буду утверждать, что знаю, какой проект лучше, но у меня есть некоторые мысли на этот счет. Последствия для рынка Децентрализованные рынки данных и моделей для машинного обучения могут разрушить монополию на данные, которой обладают современные корпорации. На протяжении последних 20 лет они занимались стандартизацией и торговлей основным источником стоимости в интернете: проприетарными сетями передачи данных и тем влиянием, которое они оказывают. Но теперь создание стоимости связано уже не с данными, а с алгоритмами. Проблемы Прежде всего, безопасные методы вычислений в настоящее время работают медленно, а машинное обучение уже требует больших вычислительных мощностей. С другой стороны, начинает появляться интерес к методам безопасных вычислений, а их производительность растет. За последние полгода я видел несколько новых подходов, которые значительно улучшают производительность HE, MPC и ZKP. Заключение Комбинация машинного обучения на основе частных данных с блокчейн-вознаграждениями может привести к созданию самых производительных систем искусственного интеллекта различного назначения. Сейчас существуют большие технические проблемы, которые со временем представляются вполне решаемыми. Этот сегмент обладает огромным потенциалом в долгосрочной перспективе, а его становление может ослабить доминирующее положение крупных интернет-компаний в области доступа к данным. Эти системы даже внушают некоторые опасения: они сами загружаются, самостоятельно развиваются, потребляют конфиденциальные данные и становятся почти неубиваемыми, заставляя меня задаться вопросом, а не приведет ли их создание к появлению самого мощного Молоха в истории. В любом случае, эти системы — еще один пример того, как криптовалюты могут сперва медленно, а затем стремительно ворваться во все сферы хозяйственной деятельности. Источник: habrahabr.ru Комментарии: |
|