Cамый маленький компьютер в мире, энергоэффективный чип и другие новинки для сферы IoT |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-04-11 16:51 Сегодня мы подготовили дайджест с новинками «чипостроения» для IoT. Расскажем о новых девайсах для шифрования данных, самом маленьком компьютере в мире от IBM и о решении NVIDIA, упрощающем интеграцию систем глубокого обучения в микропроцессоры.
/ фото Santi CC Cамый маленький компьютер в мире от IBM На конференции IBM Think 2018, проходившей в марте, компания представила самый маленький компьютер в мире. Его размеры составляют 1х1 мм, что даже меньше, чем крупица соли. Компьютер имеет процессор с несколькими сотнями тысяч транзисторов, СОЗУ, систему электропитания от солнечных батарей и модуль связи со светодиодами и фотодетектором. По мощности микрокомпьютер будет равен процессору с архитектурой х86 90-х годов. Генератор истинно случайных чисел от SK Telecom Ученые из южнокорейской компании SK Telecom разработали микрокомпьютер, способный генерировать истинно случайные числа. Подобные генераторы уже создавались ранее и даже используются в работе криптографических систем. Однако корейская компания стала первой, кто воплотил эту идею в чипе размером 3х5х1 мм (ДхШхВ). Крошечный генератор случайных чисел будет использоваться в IoT-устройствах, чтобы гарантировать защиту зашифрованных данных во время их передачи на другие девайсы. Энергоэффективный чип для IoT-криптосистем от MIT В Массачусетском технологическом институте (MIT) разработали энергоэффективный микрочип, который потребляет в 400 раз меньше энергии, чем программные реализации шифрования с открытым ключом. При этом устройство работает в 500 раз быстрее. Как и большинство криптосистем с открытым ключом, чип использует методы эллиптической криптографии. При этом он способен работать с любыми эллиптическими кривыми, а его блоки, «ответственные» за модульную арифметику, могут обрабатывать числа длиной до 256 бит (классические системы работают с 16- или 32-битными значениями). Протокол датаграмм безопасности транспортного уровня — Datagram Transport Layer Security (DTLS), который отвечает за обработку зашифрованных данных, «зашит» в чип, что снижает количество памяти, необходимое для его работы. О тестировании и конкретных планах по использованию устройства в MIT пока не сообщают. / фото Fritzchens Fritz PDГлубокое обучение в IoT: совместный проект NVIDIA и Arm В рамках сотрудничества, объявленного президентом NVIDIA Дженсеном Хуангом (Jensen Huang), две компании решили интегрировать открытую архитектуру NVIDIA Deep Learning Accelerator (NVDLA) в платформу Arm Project Trillium для машинного обучения. Совместный проект призван облегчить и ускорить внедрение deep learning систем в мобильные и IoT-устройства. NVDLA — это ускоритель для систем глубокого обучения, имеющий открытую архитектуру и строящийся на базе процессора NVIDIA Xavier. В основе NVDLA лежат мощные инструменты NVIDIA для разработчиков (это драйверы, библиотеки, SDK), среди которых вскоре появятся новые версии программируемого ускорителя глубокого обучения TensorRT. Что касается процессора Arm, то он специально «заточен» для работы с системами машинного обучения. Он выполняет более 4,5 трлн операций в секунду (на мобильных платформах), и это число может увеличиться в 2–4 раза при его «разгоне». Компании надеются, что вместе эти решения помогут производителям чипов и разработчикам упростить интеграцию систем ИИ в процессоры для IoT-устройств и снабдить рынок доступными продуктами, поддерживающими машинное обучение. Источник: habrahabr.ru Комментарии: |
|