Анализ данных — основы и терминология |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-04-08 19:27 В этой статье я бы хотел обсудить базовые принципы построения практического проекта по (т. н. «интеллектуальному») анализу данных, а также зафиксировать необходимую терминологию, в том числе русскоязычную.
Согласно википедии, Анализ данных — это область математики и информатики, занимающаяся построением и исследованием наиболее общих математических методов и вычислительных алгоритмов извлечения знаний из экспериментальных (в широком смысле) данных; процесс исследования, фильтрации, преобразования и моделирования данных с целью извлечения полезной информации и принятия решений.Говоря чуть более простым языком, я бы предложил понимать под анализом данных совокупность методов и приложений, связанных с алгоритмами обработки данных и не имеющих четко зафиксированного ответа на каждый входящий объект. Это будет отличать их от классических алгоритмов, например реализующих сортировку или словарь. От конкретной реализации классического алгоритма зависит время его выполнения и объем занимаемой памяти, но ожидаемый результат его применения строго зафиксирован. В противоположность этому мы ожидаем от нейросети, распознающей цифры, ответа 8 при входящей картинке, изображающей рукописную восьмерку, но не можем требовать этого результата. Более того, любая (в разумном смысле этого слова) нейросеть будет иногда ошибаться на тех или иных вариантах корректных входных данных. Будем называть такую постановку задачи и применяющиеся при ее решении методы и алгоритмы недетерминистическими (или нечеткими) в отличии от классических (детерминистических, четких). Алгоритмы и эвристики Описанную задачу распознавания цифр можно решать пытаясь самостоятельно подобрать функцию, реализующую соответствующее отображение. Получится, скорее всего, не очень быстро и не очень хорошо. С другой стороны, можно прибегнуть к методам машинного обучения, то есть воспользоваться вручную размеченной выборкой (или, в других случаях, теми или иными историческими данными) для автоматического подбора решающей функции. Таким образом, здесь и далее (обобщенным) алгоритмом машинного обучения я буду называть алгоритм, так или иначе на основе данных формирующий недетерминистический алгоритм, решающий ту или иную задачу. (Недетерминистичность полученного алгоритма нужна для того, чтобы под определение не подпадал справочник, использующий предварительно подгруженные данные или внешний API). Эвристика — это просто вручную подобранная функция, не использующая продвинутых методов, и, как правило, не дающая хорошего результата, но приемлемая в определенных случаях, например на ранних стадиях развития проекта. Задачи машинного обучения с учителем В зависимости от постановки, задачи машинного обучения делят на задачи классификации, регрессии и логистической регрессии. Выбор метрики и валидационная процедура Метрика качества предсказания (нечеткого) алгоритма — это способ оценить качество его работы, сравнить результат его применения с действительным ответом. Более математично — это функция, берущая на вход список предсказаний и список случившихся ответов , а возвращающая число соответствующее качеству предсказания. Например в случае задачи классификации самым простым и популярным вариантом является количество несовпадений , а в случае задачи регрессии — среднеквадратичное отклонение . Однако в ряде случаев из практических соображений необходимо использовать менее стандартные метрики качества. Типичный цикл развития проекта В самых общих чертах цикл развития проекта по анализу данных выглядит следующим образом.
Заключение На этом пока все, следующий раз мы обсудим какие конкретно алгоритмы применяются для решения задач классификации, регрессии и логистической регрессии, а о том, как сделать базовое исследование задачи и подготовить его результат для использования прикладным программистом уже можно почитать здесь. P.S. В соседнем топике я немножко поспорил с людьми, придерживающимися более академичной точки зрения на вопросы машинного обучения, чем моя. Что несколько негативно сказалось на моей хаброкарме. Так что если вы хотели бы ускорить появление следующей статьи и обладаете соответствующими полномочиями — поплюсуйте меня немножко, это поможет мне написать и выложить продолжение более оперативно. Спасибо. Источник: habrahabr.ru Комментарии: |
|