Зачем нужна обработка естественного языка в медицине: современные задачи и вызовы |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-03-28 20:43 Как пишут в The Huffington Post, 80% данных электронных медицинских карт хранится в неструктурированном виде — так называемом «текстовом пузыре». В текстовом виде хранятся не только данные ЭМК, но и большое количество другой медицинской информации — это научные статьи, клинические рекомендации, описание болезней и жалоб. И даже если данные в них частично структурированы, общепринятых форматов их хранения нет. Что такое NLP Фактически, история NLP началась с первых дней существования современной науки об искусственном интеллекте. Еще Алан Тьюринг в своей работе «Вычислительные машины и разум» в качестве критерия «разумности» машины называет ее умение общаться с человеком — сейчас это важная, но не единственная задача, которую решают разработчики NLP-систем.
В научной фантастике суперкомпьютер зачастую умеет делать все вышеперечисленное. В культовом фильме «Космическая одиссея 2001 года», HAL 9000 распознавал человеческую речь и зрительные образы, общался на обычном языке. На практике же все эти задачи являются узкоспециализированными, и их решают отдельные алгоритмы. И эти алгоритмы (и лежащие в их основе технологии) постоянно прогрессируют. Например, самое «близкое» обычным пользователям направление NLP — распознавание голоса — еще несколько лет назад базировалось на скрытых марковских моделях. Они разбивали сказанное человеком на небольшие компоненты, вычленяли фонемы, проводили статистический анализ и выдавали наиболее вероятный результат сказанного в текстовом формате. Сейчас разработчики намного чаще используют нейронные сети — в частности, рекуррентные нейронные сети и их разновидности, например long short-term memory (LSTM). Сегодня NLP системы используются все чаще и чаще – мы разговариваем с Siri, общаемся с помощником Google (в ОС Android как раз применяется LSTM с CTC) и инфотейнмент-системами автомобилей, нашу почту защищают от спама умные алгоритмы, новостные агрегаторы подбирают статьи, которые будут нам интересны, а поисковики позволяют находить нужную нам информацию по любым запросам. Какие задачи решает NLP в медицине Однако NLP-системы полезны не только в работе современных гаджетов и онлайн-приложений. Они внедряются в отдельных госпиталях и медицинских университетах еще с начала 90-х годов. Упрощение работы с электронными картами (ЭМК) Электронные медицинские карты, или ЭМК, — это аналоги привычных нам бумажных карт. Задача электронной карты — упростить документооборот и снизить объемы бумажной работы. Подробнее о том, что такое ЭМК и как они помогают контролировать качество медицинского обслуживания, мы рассказывали в одном из наших прошлых материалов. Наши решения в области NLP Ключевая задача NLP в медицине — это извлечение данных из текста. Мы в DOC+ фокусируемся именно на ней. В нашей команде, занимающейся разработкой алгоритмов машинного обучения, трудится шесть человек. Из них двое работают исключительно над NLP-технологиями. В DOC+ технология NLP используется для разметки карт, на которых обучается система проверки качества ЭМК (о ней мы писали в предыдущем материале). Особенности разработки NLP-систем В разработке таких систем есть несколько сложностей. Первая из них заключается в том, что при работе с текстами недостаточно использовать простые широкораспространённые алгоритмы и подходы. Сервисы, просматривающие текст на наличие тех или иных слов и считающие частоту их появления для оценки «важности» в медицине, дают очень ограниченный результат. Из текста: «18 февраля у меня заболела голова с левой стороны, к вечеру поднялась температура до 39. На следующий день область головной боли увеличилась, головокружения не было» система должна выделить структурированную информацию о трех симптомах:Вторая особенность заключается в том, что инструменты для обработки текста надо дополнительно настраивать под работу с узкоспециализированными материалами. Например, систему проверки правописания нам пришлось дополнительно «подкручивать», так как ни одно из представленных на рынке решений не удовлетворяло нашим требованиям. Спелл-чекеры исправляли слово «кашель» на «капель», поскольку обучались на текстах без медицинской терминологии. Поэтому мы переобучали систему на корпусе из медицинских статей. И такие небольшие доработки к классическим алгоритмам приходится делать постоянно. Что умеет наша NLP-система Сейчас разработанное нами решение распознает 400 терминов — симптомов, диагнозов, названий лекарств и т. п. При этом для большинства симптомов система способна вычленять дополнительные свойства: локализацию (боль в животе справа от пупка), тип (мокрый кашель), цвет (прозрачная мокрота), наличие осложнений и значения измеримых параметров (температура, давление). Помощь в принятии клинических решений (CDS) Системы поддержки принятия клинических решений (clinical decision support, CDS) предоставляют автоматизированную помощь врачам при постановке диагноза, назначении лечения, определении дозировки препаратов и так далее. Получить необходимую для этого медицинскую информацию позволяют NLP-системы — они черпают её из научных работ, результатов анализов, медицинских справочников и даже слов самого больного. Дальнейшее развитие NLP-систем NLP-системы позволят работать не только с медицинскими картами, но и с научными статьями и медицинскими стандартами. В сфере медицины накоплен огромный опыт, который обобщен в клинических рекомендациях, научных работах и других текстовых источниках. Логично использовать эти данные для обучения систем искусственного интеллекта наравне с картами реальных пациентов, параллельно создавая структурированную базу данных о медицине, которую смогут использовать не люди, а алгоритмы. Источник: geektimes.ru Комментарии: |
|