Нейросеть научили понимать суть физических процессов в статистических системах |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-03-30 11:24 Физики разработали новый алгоритм машинного обучения, который с помощью анализа состояний статистической системы на макроскопическом и микроскопическом уровнях находит те степени свободы, которые определяют ее физические свойства. Этот алгоритм, основанный на использовании метода ренормализационной группы, был успешно проверен на двух двумерных статистических моделях, пишут ученые в Nature Physics. Среди многочисленных технологических и научных задач, для решения которых сейчас используется машинное обучение, в последнее время появились и некоторые физические проблемы: например фазовый анализ или численное моделирование основных энергетических состояний. Часто с помощью методов машинного обучения проводится анализ большого объема экспериментальных данных. Например, недавно физики использовали один из таких методов для решения задачи минимизации энергии в модели Изинга и поиска среди данных, полученных на Большом адронном коллайдере, редких событий образования и распада бозона Хиггса. Но если метод поиска конкретной особенности среди известных данных (пусть и не самой простой по своей структуре) — задача для искусственных нейросетей довольно понятная, то намного сложнее, ничего не зная заранее о физической системе, состоящей из большого количества частиц, найти в ней те параметры и свойства, которые отвечают за ее физическое поведение. Системы, которые внешне (на макроскопическом уровне) ведут себя очень похожим образом, на микроскопическом уровне могут очень сильно отличаться. И понять, какими процессами на каком из масштабов контролируются, например, электронные или магнитные свойства сложных многоатомных кристаллов может быть непросто. Физики Мацей Кох-Януш (Maciej Koch-Janusz) из Швейцарской высшей школы Цюриха и Зохар Рингель (Zohar Ringel) из Еврейского университета в Иерусалиме разработали схему машинного обучения, которая позволяет, не имея изначально никаких данных о статистической физической системе, найти те степени свободы системы, которые определяют ее физическое поведение. Для этого ученые использовали метод ренормализационной группы — итерационный математический метод перенормировки, который позволяет переходить от одного пространственного или энергетического масштаба рассмотрения системы к другому. Несмотря на то, что разные модификации этого метода довольно сильно отличаются друг от друга, все они позволяют исключать при перенормировке те степени свободы системы, которые не связаны с ее физическим поведением, и оставить те, которые его определяют. В качестве вводных данных для нейронной сети ученые использовали конфигурации систем, состоящих из большого количества частиц, полученные случайным образом из распределения Больцмана. Эти системы описывались в реальном пространстве в рамках теории информации. При анализе нейросеть оценивала, насколько сильно та или иная степень свободы системы влияет на распределение условной вероятности конкртеного состояния частиц на небольшом участке в зависимости от размера этого участка и состояния его окружения. Обучение сети проводилось с помощью анализа взаимной информации между двумя пространственно разделенными участками системы в реальном пространстве. В результате итерационной перенормировки алгоритм постепенно отбрасывал все лишние степени свободы, оставляя в конечном итоге только те, которые описывают физическое поведение всей системы. Разработанный алгоритм ученые проверили на двух классических двумерных системах из статистической физики, для которых известны харкетризующие их критические параметры: модели Изинга, которая описывает систему спинов, которые могут быть ориентированы в одном из двух направлений, и модели мозаики домино, в которой дискретная плоскость замощается плитками, занимающими ровно две ячейки. По словам авторов работы, поиск определяющих поведение физической системы степеней свободы важен не только с количественной точки зрения, но и с качественной: оно позволяет взглянуть на исследуемую физическую проблему под нужным углом. Поэтому разработанный алгоритм машинного обучения может оказаться весьма полезным и для фундаментальной физики. Методы машинного обучения все чаще используются при решении самых разнообразных физических задач, относящихся в первую очередь к статистической и квантовой физике. Например, на основе однослойной нейросети ученые разработали метод решения квантовой задачи многих тел, которая позволяет вычислять состояния квантовых систем кубитов с минимальной энергией и исследовать поведение таких объектов во времени. Другую нейросеть физки научили считать функциональные интегралы и проверили ее работу на 1+1-мерной модели Тирринга. Александр Дубов Источник: nplus1.ru Комментарии: |
|