«День знаний» для ИИ: опубликован ТОП30 самых впечатляющих проектов по машинному обучению за прошедший год (v.2018) |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2018-01-19 14:43 Чтобы выбрать ТОП 30 (только 0,3%), за прошедший год команда Mybridge сравнила почти 8800 проектов по машинному обучению с открытым исходным кодом.
Это чрезвычайно конкурентный список, и он содержит лучшие библиотеки с открытым исходным кодом для машинного обучения, наборы данных и приложения, опубликованные в период с января по декабрь 2017 года. Чтобы дать вам представление о качестве проектов, отметим, что среднее число звезд Github — 3558. Проекты с открытым исходным кодом могут быть полезны не только ученым. Вы можете добавить что-то удивительное поверх ваших существующих проектов. Ознакомьтесь с проектами, которые вы, возможно, пропустили в прошлом году. Осторожно, под катом много картинок и gif. 1. FastText fastText – это библиотека для обучения представлениям слов и классификации предложений, позволяющая организовать автоматическое назначение категорий для произвольного текста с использованием методов машинного обучения. [11786 stars on Github]. Любезно предоставлено Facebook Research. 2. Deep Photo Style Transfer Код и данные для научной работы Deep Photo Style Transfer [9747 stars on Github]. Описан подход к передаче фотографического стиля с одного изображения на другие с успешным подавлением искажения и сохранением фотореалистичности в самых разных сценариях, включая передачу особенностей времени суток, погоды, сезона и художественных изменений. Заслуга Fujun Luan, Ph.D. at Cornell University. 3. Face Recognition «Самый простой в мире» API для распознавания лиц для Python. Модель имеет точность 99,38% в бенчмарке Labeled Faces in the Wild. Также предлагается простой инструмент, который позволяет распознавать лица с изображений в папке с помощью командной строки. Разработчик — Adam Geitgey [8672 stars on Github]. 4. Magenta Генерация искусства и музыки с помощью машинного обучения [8113 stars on Github].
5. Sonnet Sonnet — это библиотека для машинного обучения, основанная на TensorFlow для построения сложных нейронных сетей. [5731 звезда на Github]. Предоставлено Malcolm Reynolds из Deepmind 6. deeplearn.js deeplearn.js — это WebGL-accelerated JavaScript библиотека для машинного обучения с открытым исходным кодом от Nikhil Thorat из Google Brain. 7. Fast Style Transfer in TensorFlow Быстрая передача стиля с помощью TensorFlow [4843 звезды на Github]. Logan Engstrom из MIT.
8. Pysc2: StarCraft II Learning Environment [3683 stars on Github], предоставлено Timo Ewalds из DeepMind
9. AirSim AirSim — это симулятор для беспилотных летательных аппаратов, автомобилей и прочих транспортных средств, созданных на Unreal Engine. Это платформа с открытым исходным кодом для физически и визуально реалистичных симуляций. Цель — разработать платформу для исследований ИИ и экспериментов с алгоритмами глубокого обучения, компьютерного зрения и стимулированного обучения систем автономных транспортных средств. [3861 stars on Github]. Разработчик — Shital Shah из Microsoft
10. Facets Сила машинного обучения связана с его способностью изучать закономерности в больших объемах данных. Понимание ваших данных имеет решающее значение для создания мощной системы машинного обучения. Проект Facets предлагает два надежных типа визуализации, которые помогают понять и проанализировать наборы данных: Facets Overview и Facets Dive. 11. Style2Paints AI-раскраска изображений [3310 stars on Github], может раскрасить в соответствии с конкретным цветовым стилем, создать свой собственный стиль для рисования или передать стиль иллюстрации-примера. 12. Tensor2Tensor Авторы научной работы «Одна модель для обучения всему» из группы Google Brain Team задались естественным вопросом: «Можем ли мы создать унифицированную модель глубинного обучения, которая будет решать задачи из разных областей?»
Подробнее тут. 13. Image-to-image translation in PyTorch (например, horse2zebra, edges2cats и так далее) [2847 stars on Github]. Любезно предоставлено Jun-Yan Zhu, Ph.D at Berkeley 14. Faiss Faiss — это библиотека для эффективного поиска подобия и кластеризации векторов [2629 stars on Github]. Довольно часто программисты и специалисты из области data science сталкиваются с задачей поиска похожих профилей пользователей или подбора схожей музыки. Решения могут сводиться к преобразованию объектов в векторную форму и поиску ближайших. Подробнее на Хабре. 15. Fashion-mnist, Han Xiao, Research Scientist Zalando Tech Fashion-MNIST [2780 stars on Github] предлагается как замена БД MNIST (сокращение от «Mixed National Institute of Standards and Technology»), так как MNIST слишком прост. Fashion-MNIST имеет одинаковый размер изображений и структуру для обучения и тестирования. 16. ParlAI ParlAI — это основа для обучения и оценки моделей ИИ на наборе данных из множества диалогов [2578 звезд на Github]. Предоставлено Александром Миллером из Facebook Research 17. Fairseq: Facebook AI Research Sequence-to-Sequence Toolkit [2571 stars on Github] Команда Facebook AI Research (FAIR) опубликовала впечатляющие результаты работы по реализации сверточной нейронной сети для машинного перевода. Она утверждает, что fairseq, новый инструмент, работает в 9 раз быстрее традиционных рекуррентных нейронных сетей, при этом совсем незначительно уступая им в точности. 18. Pyro: Deep universal probabilistic programming with Python and PyTorch [2387 stars on Github]. Courtesy of Uber AI Labs
19. iGAN Интерактивная генерация изображений [2369 stars on Github]. 20. Deep-image-prior Восстановление изображений с помощью нейронных сетей без обучения [2188 stars on Github]. Предоставлено Дмитрием Ульяновым, Ph.D at Skoltech 21. Face classification and detection from the B-IT-BOTS robotics team Обнаружение лиц в реальном времени и эмоциональная + гендерная классификация с использованием наборов данных fer2013/IMDB [1967 stars on Github]. 22. Speech-to-Text-WaveNet от Namju Kim из Kakao Brain End-to-end распознование речи на английском языке с использованием DeepMind’s WaveNet and tensorflow [1961 stars on Github]. 23. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [1954 stars on Github]. Yunjey Choi at Korea University
24. Ml-agents: Unity Machine Learning Agents [1658 stars on Github]. Courtesy of Arthur Juliani, Deep Learning at Unity3D Unity Machine Learning Agents позволяет исследователям и разработчикам создавать игры и имитационные среды для машинного обучения используя Unity Editor с помощью простого в использовании API Python. 25. DeepVideoAnalytics [1494 stars on Github]. Courtesy of Akshay Bhat, Ph.D at Cornell University Платформа для поиска и аналитики визуальных данных. 26. OpenNMT: Open-Source Neural Machine Translation in Torch [1490 stars on Github].
27. Pix2pixHD: [1283 stars on Github]. Ming-Yu Liu at AI Research Scientist at Nvidia Pix2pixHD создан для фотореалистичного синтеза или преобразования изображений с высоким разрешением (например, 2048x1024). Его можно использовать для превращения карт семантических меток в фотореалистичные изображения или для синтеза портретов с помощью карты меток лица. 28. Horovod: Distributed training framework for TensorFlow. [1188 stars on Github]. Courtesy of Uber Engineering
29. AI-Blocks [899 stars on Github] Мощный и интуитивно понятный WYSIWYG-интерфейс, который позволяет любому создавать модели для машинного обучения. 30. Deep neural networks for voice conversion (voice style transfer) in Tensorflow [845 stars on Github]. Dabi Ahn, AI Research at Kakao Brain Цель проекта — передача стиля голоса или превращения чьего-то голоса в голос конкретного человека. Работа над этим проектом была направлена на преобразование в голос известной английской актрисы Кейт Уинслет.
Материалы, приведенные выше, несут исключительно научно-исследовательский характер. Использование результатов для достижения противоправных целей может повлечь за собой уголовную, административную и (или) гражданско-правовую ответственность. Автор не несет ответственность за подобные инциденты. Источник: habrahabr.ru Комментарии: |
|