Ход часов лишь однозвучный |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-12-22 10:08 Первая нобелевская премия 2017 года, которую традиционно вручают за достижения в области физиологии и медицины, досталась американским ученым за открытие молекулярного механизма, обеспечивающего все живые существа собственными «биологическими часами». Это тот случай, когда о значимости научных достижений, отмеченных самой престижной премией, может судить буквально каждый: нет человека, который не был бы знаком со сменой ритмов сна и бодрствования. О том, как устроены эти часы и как удалось разобраться в их механизме, читайте в нашем материале. В прошлом году Нобелевский комитет премии по физиологии и медицине удивил общественность — на фоне повышенного интереса к CRISPR/Cas и онкоиммунологии награду присудили за глубоко фундаментальную работу, сделанную методами классической генетики на пекарских дрожжах. В этот раз комитет снова не пошел на поводу у моды и отметил фундаментальную работу, выполненную на еще более классическом генетическом объекте — дрозофиле. Лауреаты премии Джеффри Холл, Майкл Росбаш и Майкл Янг, работая с мушками, описали молекулярный механизм, лежащий в основании циркадных ритмов — одной из важнейших адаптаций биологических существ к жизни на планете Земля. Что такое биологические часы? Циркадные ритмы — результат работы циркадных, или биологических часов. Биологические часы — это не метафора, а цепочка белков и генов, которая замкнута по принципу обратной отрицательной связи и совершает суточные колебания с циклом примерно в 24 часа — в соответствии с продолжительностью земных суток. Эта цепочка довольно консервативна у животных, а принцип устройства часов одинаков у всех живых организмов — у которых они есть. В настоящее время достоверно известно о наличии внутреннего осциллятора у животных, растений, грибов и цианобактерий, хотя у других бактерий тоже обнаруживаются некие ритмические колебания биохимических показателей. К примеру, наличие суточных ритмов предполагается у бактерий, которые формируют микробиом кишечника человека — регулируются они, по всей видимости, метаболитами хозяина. У подавляющего большинства наземных организмов биологические часы регулируются светом — поэтому они заставляют нас спать ночью, а бодрствовать и принимать пищу днем. При смене светового режима (к примеру, в результате трансатлантического перелета) они подстраиваются под новый режим. У современного человека, который живет в условиях круглосуточного искусственного освещения, циркадные ритмы нередко нарушаются. По данным специалистов из Национальной токсикологической программы США, смещенный на вечернее и ночное время рабочий график чреват для людей серьезным риском для здоровья. Среди нарушений, связанных со сбоем циркадных ритмов, — расстройства сна и пищевого поведения, депрессия, ухудшение иммунитета, повышенная вероятность развития сердечно-сосудистых заболеваний, рака, ожирения и диабета. Рассмотрим подробнее устройство биологических часов у млекопитающих. Высший командный центр, или «мастер-часы», расположен в супрахиазматическом ядре гипоталамуса. Информация об освещенности поступает туда через глаза — сетчатка содержит специальные клетки, которые напрямую сообщаются с супрахиазматическим ядром. Нейроны этого ядра отдают команды остальным частям мозга, к примеру, регулируют выработку эпифизом «гормона сна» мелатонина. Несмотря на наличие единого командного центра, собственные часы есть в каждой клетке организма. «Мастер-часы» как раз и нужны для того, чтобы синхронизировать или перенастраивать периферические часы. Пара CLOCK-BMAL1 регулирует экспрессию не только пары PER и CRY. Среди их мишеней имеется также пара белков, которые подавляют активность самих CLOCK и BMAL1, а также три фактора транскрипции, контролирующих множество других генов, которые не относятся непосредственно к работе часов. Ритмичные колебания концентраций регуляторных белков приводят к тому, что суточной регуляции оказываются подвержены от 5 до 20 процентов генов млекопитающих. Причем здесь мухи?
Почти все упомянутые гены и весь механизм в целом был описан на примере мушки-дрозофилы — этим занимались американские ученые, в том числе и нынешние лауреаты Нобелевской премии: Джеффри Холл, Майкл Росбаш и Майкл Янг. Жизнь дрозофилы, начиная со стадии вылупления из куколки, строго регулируется биологическими часами. Мушки летают, кормятся и спариваются только днем, а ночью «спят». Кроме того, в течение первой половины ХХ века дрозофила была основным модельным объектом для генетиков, поэтому ко второй его половине у ученых накопился достаточный инструментарий для изучения мушиных генов. Первые мутации в генах, связанных с циркадными ритмами, были описаны в 1971 году в статье Рональда Конопки и Сеймура Бензера, которые работали в Калифорнийском технологическом институте. Путем случайного мутагенеза исследователям удалось получить три линии мух с нарушением циркадного цикла: для одних мух в сутках как будто было 28 часов (мутация perL), для других — 19 (perS), а мухи из третьей группы вообще не имели никакой периодичности в поведении (per0). Все три мутации попадали в один и тот же участок ДНК, который авторы назвали period. В середине 80-х годов ген period был независимо выделен и описан в двух лабораториях — лаборатории Майкла Янга в университете Рокфеллера и в университете Брандейса, где работали Росбаш и Холл. В дальнейшем все трое не теряли интереса к этой тематике, дополняя исследования друг друга. Ученые установили, что введение нормальной копии гена в мозг «аритмичных» мух с мутацией per0 восстанавливает их циркадный ритм. Дальнейшие исследования показали, что увеличение копий этого гена сокращает суточный цикл, а мутации, приводящие к снижению активности белка PER, — удлиняют. В начале 90-х сотрудники Янга получили мух с мутацией timeless (tim). Белок TIM был идентифицирован как партнер PER по регуляции циркадных ритмов дрозофилы. Надо уточнить, что у млекопитающих этот белок не работает — его функцию выполняет упомянутый выше CRY. Пара PER-TIM выполняет у мух ту же функцию, что у людей пара PER-CRY — в основном подавляет собственную транскрипцию. Продолжая анализировать аритмичных мутантов, Холл и Росбаш обнаружили гены clock и cycle — последний является мушиным аналогом фактора BMAL1 и в паре с белком CLOCK активирует экспрессию генов per и tim. По результатам исследований Холл и Росбаш предложили модель обратной отрицательной регуляции, которая и принята в настоящее время. Помимо основных белков, задействованных в процессе формирования суточного ритма, в лаборатории Янга был открыт ген «тонкой настройки» часов — doubletime (dbt), продукт которого регулирует активность PER и TIM. Отдельно стоит сказать про открытие белка CRY, который у млекопитающих заменяет TIM. Этот белок есть и у дрозофилы, и описан он был именно на мухах. Оказалось, что если мух перед наступлением темноты осветить ярким светом, циркадный цикл у них немного смещается (судя по всему, так же это работает и у людей). Сотрудники Холла и Росбаша обнаружили, что белок TIM является светочувствительным и быстро разрушается даже в результате короткого светового импульса. В поисках объяснения феномена ученые идентифицировали мутацию crybaby, которая отменяла эффект освещения. Детальное изучение мушиного гена cry (от cryptochrome) показало, что он очень похож на уже известные к тому моменту циркадные фоторецепторы растений. Оказалось, что белок CRY воспринимает свет, связывается с TIM и способствует разрушению последнего, таким образом продлевая фазу «бодрствования». У млекопитающих, по-видимому, CRY выполняет функцию TIM и не является фоторецептором, однако на мышах было показано, что выключение CRY, так же как у мух, приводит к фазовому сдвигу в цикле «сон-бодрствование». Вручение Нобелевской премии именно такому составу участников не вызывает удивления, как и сам факт ее присуждения — начиная с 2009 года трио успело получить несколько престижных научных наград. А их мухи с мутацией perS успели послужить моделью для изучения наследственного расстройства сна у людей — семейного синдрома опережения фазы сна («синдрома жаворонка», familial advanced sleep phase syndrome), в очередной раз доказав пользу фундаментальных исследований. Дарья СпасскаяИсточник: nplus1.ru Комментарии: |
|