Введение в анализ социальных сетей на примере VK API |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-11-25 08:45 Данные социальных сетей — неисчерпаемый источник исследовательских и бизнес-возможностей. На примере Вконтакте API и языка Python мы сегодня разберем пару практических примеров, которы помогут узнать:
Disclaimer: данная статья не претендует на какую-либо новизну, а лишь преследует цель помочь интересующимся собраться с силами и начать претворять свои идеи в жизнь. (волосяной шар для привлечения внимания) И начнем сразу же с первой задачи: построить эгоцентричный граф друзей, удалив себя самого.
Результатом работы кода стал данный граф: В моем случае глазами можно выделить 2 большие компоненты связанности: друзей из двух разных городов проживания. Помимо ограничений на частоту обращений, существуют и количественные ограничения на вызов однотипных методов. По понятным причинам, мы не предоставляем информацию о точных лимитах. Так, к примеру, вызов метода поиска профиля users.search или метод просмотра стены пользователя wall.get при превышении некоторого лимита (но при не превышении документированных лимитов) начинает выдавать пустые результаты. Эта ситуация может породить ошибки: так, например, при поиске пользователей вы можете посчитать, что по данному поисковому запросу нет результатов, а на самом деле они отсутствуют. Ниже приведен фрагмент кода, который поможет вам учитывать документированные лимиты, например 3 запроса в секунду.
На этом же графе рассмотрим пример использования программы Gephi. Gephi — это программа с открытым исходным кодом для анализа и визуализации графов, написанная на Java, изначально разработаная студентами Технологического университета Компьеня во Франции. Gephi была выбрана для участия в Google Summer Code в 2009, 2010, 2011, 2012 и 2013 годах [wiki]. Для начала сохраним наш граф в формат .graphml — формат описания графов на основе XML.
Экспортировав, загрузим в Gephi и получим примерно такой результат: Последняя задача навеяна одной из лабораторных работ первого набора курса Специалист по Большим данным от New Professions Lab. На основе заведомо известного списка групп социальной сети Вконтакте необходимо построить граф:
В качестве примера групп будем рассматривать группы новостных изданий, при желании вы можете попробовать и другие группы.
Результатом будет данный граф: Конечно, представленные тут задачи лишь демонстрируют простоту и доступность работы с социальными сетями. На деле же приходится решать более сложные задачи. Так, к примеру, данные социального профиля могут обогатить данные DMP систем (возраст, интересы, социальная группа): главной задачей будет найти и поставить в соответствие пользователю DMP-системы его социальный профиль. Также появилось много стартапов, которые используют социальные сети как источник для создания резюме: amazinghiring, entelo, profiscope, gild и др. Главными задачами здесь будет: найти одного и того же пользователя в разных социальных сетях и на основе данных, полученных из социальных сетей, создать резюме пользователя, так как большинство социальных сетей, кроме, разве что, linkedin, не имеют достаточного количества подходящей для резюме информации. Источник: habrahabr.ru Комментарии: |
|