Машинное обучение своими руками (часть 2). Сервис для классификации обращений в тех. поддержку |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-11-21 13:55 В октябре команда облачного сервиса Okdesk приняла участие в пензенском хакатоне, в рамках которого мы разработали "коробочного" Telegram-бота для Okdesk. Бот позволит клиентам сервисных компаний отправлять заявки на обслуживание, переписываться по заявками и ставить оценки выполнению заявок не выходя из любимого мессенджера. Мы планировали написать об этом статью на Хабру, но вовремя остановились. Воистину, кому сегодня интересно читать о том, что на очередном хакатоне был разработан очередной Telegram-бот? Поэтому мы написали продолжение статьи о машинном обучении для классификации заявок в тех. поддержку. В этой статьей рассказываем о том, как после обучения алгоритма сделать работающий сервис, на вход которому передается текст клиентской заявки, а на выходе — категория, к которой относится заявка. Краткое содержание предыдущей части Настоятельно рекомендуем прочитать первую часть перед тем, как приступить к чтению данного текста (или хотя бы добавить первую часть статьи в закладки). Ниже изложим краткое содержание. Итак, сервисные компании оказывают услуги своим клиентам. Клиенты отправляют заявки в службу поддержки клиентов: например, "не работает интернет" или "не проходит проводка в 1С". В сервисной компании разными направлениями занимаются разные люди: проблемы с интернетом лежат в ответственности группы системных администраторов, а проблемы по 1С "падают" на группу сопровождения 1С. Распределение заявок по группам можно поручить диспетчеру, но это дополнительные расходы (зарплата) и потеря времени решения (ко времени решения заявок добавляется реакция диспетчера на распределение заявок). Логично переложить задачу распределения заявок на "умный алгоритм", который по тексту заявки сможет определить, к какому направлению она относится. Для решения этой задачи была взята обучающая выборка из 1200 текстов заявок с проставленными категориями (14 категорий). По обучающей выборке был составлен словарь (набор имеющих значение для классификации слов), все заявки "проецировались" на словарь (т.е. каждому тексту заявки ставился в соответствие вектор в пространстве словаря), после чего на векторах-проекциях заявок был найден лучший для данной обучающей выборки алгоритм классификации. Для классификации заявок алгоритмом на вход подавался вектор в пространстве словаря, а на выходе алгоритм давал предсказание категории заявки. Лучший алгоритм показывал на обучающей выборке 74,5% точность классификации (что весьма неплохо для 14 категорий), но благодарные читатели писали в личку, что на их данных примененный алгоритм показывал точность в 92% (а это уже вполне "продакшн" вариант). Вся эта работа проводилась на ноутбуке, для получения практической пользы необходимо каким-то образом полученный на ноутбуке результат превратить в веб-сервис. Выгрузка словаря и обученного алгоритма Напомним, что классификация новых заявок проводится в 2 этапа:
Таким образом, для переноса механизма классификации с ноутбука в веб-сервис, нам необходимо "выгрузить" полученный словарь и обученный алгоритм. Далее по тексту будем использовать переменные из первой части статьи. Выгрузка словаря С выгрузкой словаря все просто. В первой части мы записали все слова словаря (порядок важен!) в list-переменную words. Теперь необходимо записать слова из переменной words в текстовый файл. Каждое слово будем записывать с новой строки.
Выгрузка дампа обученного алгоритма Обучение алгоритма — операция, которая требует много машинного времени. Проводить её при каждом запуске алгоритма не целесообразно. Поэтому если есть возможность сохранить каким-то образом обученный алгоритм для запуска на других машинах, этой возможностью необходимо воспользоваться. Python предлагает 2 варианта для сохранения алгоритма. Встроенный модуль pickle:
Он позволяет сохранить дамп в переменную, а переменную можно сохранить в файл. Библиотека joblib:
Она не позволяет записывать дамп модели в переменную, но сразу записывает дамп в .pkl файл. Для нашей задачи необходимо сохранить дамп алгоритма в файл:
Теперь у нас есть второй файл: дамп обученного алгоритма в файле model_tree.pkl Скрипт классификации новых заявок Скрипт, который будет классифицировать новые заявки, должен уметь следующее:
Приступим. Для начала импортируем необходимые библиотеки. С большинством из необходимых для работы скрипта библиотек мы познакомились либо в первой части статьи, либо (с codecs) в этой статье чуть выше. Дополнительно возникает библиотека sys — она нужна нам для работы с параметрами командной строки (из которой мы будем передавать в скрипт текст)
Теперь загрузим словарь и обученный алгоритм:
Перед тем, как проецировать новый текст на пространство словаря, необходимо разбить текст на слова (предварительно приведя текст к нижнему регистру). Объявим соответствующие функции:
И в завершении объявим функцию, которая принимает на вход новый текст, а на выходе выдает предсказание его категории:
Напомним, что мы планируем передавать текст новой заявки из командной строки. Для того, чтобы получить в скрипте аргументы командной строки, воспользуемся библиотекой sys. Sys.argv возвращает список аргументов командной строки, при этом нулевой элемент — название скрипта (но нам это не важно, так как названия скрипта нет в словаре; оно само исчезнет при проецировании). Таким образом, для передачи текста новой заявки в скрипт, нам необходимо "склеить" в скрипте переданные параметры командной строки (так как каждое слово из текста новой заявки будет передаваться как один аргумент):
Важно! В зависимости от используемой в консоли кодировки, в строке new_issue += ' ' + i.decode('cp1251') параметр у decode может быть другим. Итак, к файлу со словарем и файлу с дампом обученного алгоритма, мы добавили третий файл: скрипт, который делает всю работу по предсказанию категории новой заявки. Далее все три файла необходимо сложить на сервере в одну папку и настроить необходимое окружение (python с библиотеками). Скрипт можно запускать из командной строки любым удобным вам способом (например, написать на любимом вами языке простенький сервис, который будет получать по сети текст новой заявки, передавать его в скрипт, получать ответ и отправлять назад). Конец! Желаем удачи в решении ваших ML-задач. Ну а мы продолжим разрабатывать Okdesk — самую удобную (по мнению нашей компании :)) helpdesk систему для обслуживания клиентов в сервисных компаниях, параллельно исследуя возможности применения “умных алгоритмов” для решения задач, связанных с обслуживанием. Источник: habrahabr.ru Комментарии: |
|