Искусственный интеллект научили избегать безвыходных ситуаций |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-11-29 12:05 Исследователи разработали новый метод обучения алгоритмов, который позволяет наблюдателю реже сбрасывать систему к изначальному состоянию. Для этого они предложили дополнять алгоритмы планировщиком, который анализирует опасность последующих действий, и, в случае, если они могут привести к необратимым последствиям, возвращает систему в исходное состояние, сообщается в работе, опубликованной на arXiv.org. Машинное обучение позволило в последние годы совершить огромный прогресс во многих областях, например, в создании беспилотных автомобилей. Алгоритмам необходимы большие наборы тренировочных данных и множество попыток, в которых он обучается выполнению задач в разных условиях. Такой подход позволяет получать в результате более эффективные алгоритмы, чем те, чью поведение запрограммировано «вручную», но помимо большого времени обучения это имеет еще один недостаток — нередко алгоритм во время очередной попытки приходит в необратимое состояние, и разработчик должен сбросить его и среду к исходному состоянию. Группа под руководством Сергея Левина (Sergey Levine) из Google Brain и Калифорнийского университета в Беркли предложила научить алгоритмы самостоятельно решать проблему перезапуска после неуспешного выполнения задачи и минимизировать количество сбросов к исходному состоянию. Основа метода состоит в том, что алгоритм учится не только правильно выполнять поставленную задачу, но и возвращаться из текущего состояния в исходное. Для этого исследователи предлагают программировать алгоритм таким образом, чтобы его поведение обуславливалось двумя компонентами: планировщиком, отвечающим непосредственно за поставленную задачу, и планировщиком, который определяет, сможет ли алгоритм пройти цепочку действий в обратную сторону. Действие первого планировщика рассматривается как безопасное только в случае, если после него систему можно вернуть в исходное состояние. Если действие ведет к необратимым последствиям, второй планировщик прекращает его. Если же система все же вошла в необратимое состояние, алгоритм может совершить полную перезагрузку окружения и окажется в исходной позиции. Разработчики продемонстрировали концепцию с помощью простого двуногого агента, передвигающегося по горизонтальной поверхности. На видео можно увидеть два алгоритма: с предложенной системой планирования (справа) и без нее (слева). Можно увидеть, что первый алгоритм замечает яму перед ним и не падает в нее. Также за счет того, что он обучается возврату в исходную позицию, алгоритм самостоятельно возвращается в исходную позицию без необходимости вмешательства наблюдателя. Недавно разработчики из Google создали алгоритм, выполняющий паркур, применив обучение с подкреплением. За счет этого алгоритм самостоятельно научился сложным движениям — он стал перепрыгивать ямы, уклоняться от препятствий сверху, а также взбегать на склоны и перепрыгивать барьеры. Григорий Копиев Источник: nplus1.ru Комментарии: |
|