В сфере искусственного интеллекта решающую роль играют люди, а не машины

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


В финансовой сфере все активнее внедряются технологии искусственного интеллекта – в инвестиционной компании Bridgewater Associates также решили автоматизировать процессы внутреннего управления. Однако в отличие от других подходов к интеграции ИИ и финансов, тактика Bridgewater строится не на определении аномалий, а на механизации.

Эта стратегия основана на взглядах основателя компании Рея Далио – он считает, что залогом успеха могут стать системы правил и минимизация влияния эмоций.

По словам Далио, правильно выстроенные алгоритмы часто помогают нивелировать искажение восприятия в принятии решений. Он отмечает, что если его убеждения противоречат результатам компьютерной модели, дополнительное обдумывание вопроса обычно позволяет прийти к оптимальному выводу. С другой стороны, важно избежать принятия решений только на основе данных алгоритма. Компьютерные системы не могут полностью скорректировать искажения восприятия, свойственные человеку, однако они позволяют выработать правильные привычки и дисциплину.

Далио подчеркивает, что машинное обучение сегодня работает как «черный ящик» – ИИ получает большие объемы информации и делает выводы на основе алгоритмов, непонятных человеку. По мнению основателя Bridgewater, ИИ можно разделить на три категории: имитация, data mining (глубинный анализ данных) и экспертные системы. Имитация – это простые задачи, которые легко повторить, они происходят в неизменных условиях, поэтому их понимание не требуется. Data mining – это применение большого количества информации для решения конкретных проблем. Для обеспечения понимания Далио отдает предпочтение именно экспертным системам – они призваны обеспечить принятие решений по методу дедукции (от общего к частному), а не индукции (от частного к общему).

Такие решения, как увольнение сотрудника или покупки акций компаний в процессе поглощения – это сложные задачи, часто невыполнимые просто на основе массива предыдущих данных. Принятие решений с помощью математики, без понимания фундаментальных процессов, в данном случае чрезвычайно рискованно. Далио уверен, что на big data сейчас делаются слишком большие ставки, в то время как действительно выиграют только те, кто способен превращать слова в алгоритмы.

Подход основателя Bridgewater может показаться некоторым устаревшим – однако остальные исследования в области ИИ также сложно назвать новой отраслью. Нет причин полагать, что нейросети станут способом воссоздания разума, поэтому справедливо учитывать и другие подходы, в зависимости от конкретных сценариев. В одном с Далио трудно не согласиться – в науке о данных важно более глубокое понимание специфической сферы, без него сложно добиться успехов с машинным обучением.


Источник: www.robogeek.ru

Комментарии: