[Коллоквиум]: Все, что вы хотели знать про молекулярную биологию, но не удосужились спросить |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-10-25 00:38 Началом хаоса заканчивается классическая наука. Изучая природные закономерности, физики почему-то пренебрегали хаотическими проявлениями: формированием облаков, турбулентностью в морских течениях, колебаниями численности популяций растений и животных, апериодичностью пиков энцефалограммы мозга или сокращений сердечных мышц. Порождаемые хаосом природные феномены, лишенные регулярности и устойчивости ученые всегда предпочитали оставлять за рамками своих изысканий. Однако, начиная с 1970-х годов некоторые исследователи в США и Европе начинают изучать хаотические явления. Десять лет спустя понятие «хаос» дало название стремительно развивающейся дисциплине, которая перевернула всю современную науку. Новая наука дала миру особый язык, новые понятия: фрактал, бифуркация, прерывистость, периодичность, аттрактор, сечение фазового пространства. Для некоторых ученых хаос скорее наука переходных процессов, чем теория неизменных состояний, учение о становлении, а не о существовании. Хаос вызывает к жизни вопросы, которые плохо поддаются решению традиционными методами, однако позволяют сделать общие заключения о поведении сложных систем. Все первые теоретики хаоса чувствуют, что поворачивают вспять развитие науки, следовавшей по пути редукционизма – анализа систем как совокупностей составляющих их элементарных объектов: кварков, хромосом, нейронов. Они верят, что ищут пути к анализу систем как целого. По словам одного физика XX-й век будет памятен лишь благодаря созданию теории относительности, квантовой механики и хаоса. Теория относительности развеяла мечту о детерминизме физических событий, а хаос развенчал Лапласову фантазию о полной предопределенности развития систем. Многие простейшие системы, как оказывается, обладают исключительно сложным и непредсказуемым хаотическим поведением. И все же в подобных системах иногда самопроизвольно возникает порядок, то есть порядок и хаос в них сосуществуют. Лишь новая научная дисциплина могла положить начало преодолению огромного разрыва между знаниями о том, как действует единичный объект – одна молекула воды, одна клеточка сердечной ткани, один нейрон – и как ведет себя миллион таких объектов. Изучать хаос начали в 1960-х годах, когда ученые осознали, что довольно простые математические уравнения позволяют моделировать системы, столь же неупорядоченные, как самый бурный водопад. Незаметные различия в исходных условиях способны обернуться огромными расхождениями в результатах – подобное называют «сильной зависимостью от начальных условий». Применительно к погоде это выливается в «эффект бабочки»: сегодняшнее трепыхание крыльев мотылька в Пекине через месяц может вызвать ураган в Нью-Йорке. Составляя «родословную» новой науки, исследователи хаоса обнаруживают в прошлом много предвестий переворота. Однако для молодых физиков и математиков, возглавивших революцию в науке, точкой отсчета стал именно эффект бабочки. Глава 1. Эффект бабочки Физикам нравится думать, будто все, что надо сделать, сводится к фразе: вот начальные условия; что случится дальше? Ричард Ф. Фейнман В 1960-м году Лоренц создал мини-модель погоды, которая привела в восторг его коллег. Он выбрал двенадцать уравнений, описывающих связь между температурой и атмосферным давлением, а также между давлением и скоростью ветра и применил на практике законы Ньютона Вот уже два столетия наука об атмосфере ждала появления машины, способной снова и снова производить тысячи вычислений, повинуясь указаниям человека. Лишь компьютер мог доказать, что мир идет по пути детерминизма, что погода подчиняется законам, столь же незыблемым, как и принципы движения планет, наступления солнечных и лунных затмений, морских приливов и отливов. Когда астроном говорил, что комета Галлея вновь приблизится к Земле через семьдесят шесть лет, это воспринималось как факт, а не как предсказание. Тщательно составленные численные прогнозы, основанные на детерминизме, определяли траектории космических кораблей и ракет. Отсюда следовал вывод: почему бы не рассчитать поведение ветра и облаков? Вполне понятно стремление исследователей XX-го века – биологов, физиологов, экономистов – разложить свои миры на атомы, подчиняющиеся законам науки. Во всех названных дисциплинах господствовал детерминизм сродни ньютоновскому. Впрочем, существовало одно маленькое «но», изменения никогда не бывают совершенными. Ученые, вставшие под ньютоновские знамена, обычно выдвигают следующий аргумент: имея приблизительные данные о начальном состоянии системы и понимая естественный закон, которому она подчиняется, можно рассчитать ее примерное поведение. Такой подход вытекает из самой философии науки. Один видный теоретик любил подчеркивать в своих лекциях: «Главная идея науки состоит в том, чтобы не обращать внимания на лист, падающий в одном из миров другой галактики, когда вы пытаетесь объяснить движение шарика по бильярдному столу на планете Земля. Однажды, зимой 1961-го года, намериваясь изучить определенную последовательность событий, Лоренц несколько сократил исследование – приступил к построению не с начальной точки, а с середины. В качестве исходных данных ученый ввел цифры из предыдущей распечатки. Когда он через час вернулся, отдохнув от шума и выпив чашку кофе, то увидел нечто неожиданное, давшее начало новой науке (рис. 1). Новый отрезок должен был полностью повторить предыдущий, ведь Лоренц собственноручно ввел в компьютер числа, и программа оставалась неизменной. Тем не менее, график существенно расходился с ранее полученным. Лоренц посмотрел сначала на один ряд чисел, потом на второй… С таким же успехом он мог наугад выбрать две случайные модели погоды. И первое, о чем он подумал, – вышла из строя вакуумная лампа. Внезапно ученый все понял. Машина работала нормально, а разгадка заключалась в числах, заложенных им в компьютер. Машина могла хранить в памяти шесть цифр после запятой, например …,506127. На распечатку же, в целях экономии места, выдавалось всего три: …,506. Лоренц ввел округленные значения, предположив, что разница в тысячных долях несущественна. Предположение выглядело вполне разумно. Следовало предполагать, что при незначительном отличии начальной точки от введенной ранее модель будет чуть-чуть расходиться с предыдущим вариантом. И все-таки в системе Лоренца малые погрешности оказались катастрофическими. Лоренц понял: долгосрочное прогнозирование погоды обречено. Эффект бабочки имеет и строгое научное название – «сильная зависимость от начальных условий». Зависимость эту превосходно иллюстрирует детский стишок: Не было гвоздя – подкова пропала, Не было подковы – лошадь захромала, Лошадь захромала – командир убит, Конница разбита, армия бежит, Враг вступает в город, пленных не щадя, От того что в кузнице не было гвоздя. (Перевод С.Я. Маршака) Как наука, так и жизнь учит, что цепь событий может иметь критическую точку, в которой небольшие изменения приобретают особую значимость. Суть хаоса в том, что такие точки находятся везде, распространяются повсюду. Лоренц, отложив на время занятия погодой, стал искать более простые способы воспроизведения сложного поведения объектов. Один из них был найден в виде системы из трех нелинейных, то есть выражающих не прямую пропорциональную зависимость, уравнений. Линейные соотношения изображаются прямой линией на графике, и они достаточно просты. Линейные уравнения всегда разрешимы, что делает их подходящими для учебников. Линейные системы обладают неоспоримым достоинством: можно рассматривать отдельные уравнения как порознь, так и вместе. Нелинейные системы в общем виде не могут быть решены. Рассматривая жидкостные и механические системы, специалисты обычно стараются исключить нелинейные элементы, к примеру, трение. Если пренебречь им, можно получить простую линейную зависимость между ускорением шайбы и силой, придающей ей это ускорение. Приняв в расчет трение, мы усложним формулу, поскольку сила будем меняться в зависимости от скорости движения шайбы. Из-за этой сложной изменчивости рассчитать нелинейность весьма непросто. Вместе с тем, она порождает многообразные виды поведения объектов, не наблюдаемые в линейных системах. Особый вид движения жидкости породил три уравнения Лоренца, которые описывают течение газа или жидкости, известное как конвекция. В атмосфере конвекция как бы перемешивает воздух, нагретый при соприкосновении с теплой почвой. Системой, вполне точно описываемой уравнениями Лоренца, является водяное колесо определенного типа, механический аналог вращающихся конвенционных кругов (рис. 2). Вода постоянно льется с вершины колеса в емкости, закрепленные на его ободе, а из каждой емкости она вытекает через небольшое отверстие. В том случае, когда поток воды мал, верхние емкости заполняются недостаточно быстро для преодоления трения. Если же скорость водяной струи велика, колесо начинает поворачиваться под воздействием веса жидкости и вращение становится непрерывным. Однако, коль скоро струя сильна, черпаки, полные воды, некоторое время колеблются внизу, а затем начинают стремиться в другую сторону, таким образом, замедляя движение, а затем останавливая колесо; и в дальнейшем оно меняет направление движения на противоположное, поворачиваясь сначала по часовой стрелке, а потом – против нее Источник: www.youtube.com Комментарии: |
|