Хронология уровня CO в атмосфере США (решение задачи Kaggle с помощью Python+Feature Engineering)

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Хочу поделиться опытом решения задачи по машинному обучению и анализу данных от Kaggle. Данная статья позиционируется как руководство для начинающих пользователей на примере не совсем простой задачи.

Выборка данных

Выборка данных содержит порядка 8,5 млн строк и 29 столбцов.Вот некоторые из параметров:

  • Широта-latitude
  • Долгота-longitude
  • Способ взятия пробы-method_name
  • Дата и время взятия пробы-date_local

image
Задача

  1. Найти параметры максимально влияющие на уровень CO в атмосфере.
  2. Создание гипотезы, предсказывающей уровень CO в атмосфере.
  3. Создание нескольких простых визуализаций.

Импорт библиотек

import pandas as pd import matplotlib.pyplot as plt from sklearn import preprocessing from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn import preprocessing import warnings warnings.filterwarnings('ignore') import random as rn from sklearn.cross_validation import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestRegressor from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn import svm  

Далее необходимо проверить исходные данные на наличие пропусков

Выведем в процентом соотношение количество пропусков в каждом из параметров. Исходя из результатов ниже видно присутствие пропусков в параметрах ['aqi','local_site_name','cbsa_name'].

(data.isnull().sum()/len(data)*100).sort_values(ascending=False)

method_code            50.011581 aqi                    49.988419 local_site_name        27.232437 cbsa_name               2.442745 date_of_last_change     0.000000 date_local              0.000000 county_code             0.000000 site_num                0.000000 parameter_code          0.000000 poc                     0.000000 latitude                0.000000 longitude               0.000000 ... 

Из описания к приложенному набору данных я сделал вывод, что можно пренебречь данными параметрами. Поэтому необходимо «вычеркнуть» эти параметры из набора данных.

def del_data_func(data,columns):     for column_name in columns: del data[column_name] del_list = data[['method_code','aqi','local_site_name','cbsa_name','parameter_code',                  'units_of_measure','parameter_name']] del_data_func (data, del_list) 

Выявление зависимостей на исходном наборе данных

В качестве целевой переменной я выбрал параметр ['arithmetic_mean']. Исходя из корреляционной матрицы сразу можно выявить 2 положительные корреляции с целевым параметром: ['arithmetic_mean'] и ['first_max_hour'], ['first_max_hour'].

Из описания набора данных следует, что «first_max_value» — самое высокий показатель за день, а «first_max_hour» — час, когда было зарегистрировано самое высокий показатель.

Преобразование исходных параметров:

Для правильной работы алгоритма необходимо преобразование категориального признака в числовой.На представленных выше данных в глаза сразу бросается несколько параметров:
«pollutant_standard», «event_type», «address».

data['county_name'] = data['county_name'].factorize()[0] data['pollutant_standard'] = data['pollutant_standard'].factorize()[0] data['event_type'] = data['event_type'].factorize()[0] data['method_name'] = data['method_name'].factorize()[0] data['address'] = data['address'].factorize()[0] data['state_name'] = data['state_name'].factorize()[0] data['county_name'] = data['county_name'].factorize()[0] data['city_name'] = data['city_name'].factorize()[0]

Feature Engineering

В наборе данных у нас присутствует дата и время. Для выявления новых зависимостей и
увеличения точности предсказания необходимо ввести параметр сезонности времен года.

data['season'] = data['date_local'].apply(lambda x: 'winter' if (x[5:7] =='01' or x[5:7] =='02' or x[5:7] =='12') else x) data['season'] = data['season'].apply(lambda x: 'autumn' if (x[5:7] =='09' or x[5:7] =='10' or x[5:7] =='11') else x) data['season'] = data['season'].apply(lambda x: 'summer' if (x[5:7] =='06' or x[5:7] =='07' or x[5:7] =='08') else x) data['season'] = data['season'].apply(lambda x: 'spring' if (x[5:7] =='03' or x[5:7] =='04' or x[5:7] =='05') else x) data['season'].replace("winter",1,inplace= True) data['season'].replace("spring",2,inplace = True) data['season'].replace("summer",3,inplace=True) data['season'].replace("autumn",4,inplace=True) data["winter"] = data["season"].apply(lambda x: 1 if x==1 else 0) data["spring"] = data["season"].apply(lambda x: 1 if x==2 else 0) data["summer"] = data["season"].apply(lambda x: 1 if x==3 else 0) data["autumn"] = data["season"].apply(lambda x: 1 if x==4 else 0)

Также обозначим каждый год в хронологической цепочки в качестве отдельного параметра.

data['date_local'] = data['date_local'].map(lambda x: str(x)[:4]) data["1990"] = data["date_local"].apply(lambda x: 1 if x=="1990" else 0) data["1991"] = data["date_local"].apply(lambda x: 1 if x=="1991" else 0) data["1992"] = data["date_local"].apply(lambda x: 1 if x=="1992" else 0) data["1993"] = data["date_local"].apply(lambda x: 1 if x=="1993" else 0) data["1994"] = data["date_local"].apply(lambda x: 1 if x=="1994" else 0) data["1995"] = data["date_local"].apply(lambda x: 1 if x=="1995" else 0) data["1996"] = data["date_local"].apply(lambda x: 1 if x=="1996" else 0) data["1997"] = data["date_local"].apply(lambda x: 1 if x=="1997" else 0) data["1998"] = data["date_local"].apply(lambda x: 1 if x=="1998" else 0) data["1999"] = data["date_local"].apply(lambda x: 1 if x=="1999" else 0) data["2000"] = data["date_local"].apply(lambda x: 1 if x=="2000" else 0) data["2001"] = data["date_local"].apply(lambda x: 1 if x=="2001" else 0) data["2002"] = data["date_local"].apply(lambda x: 1 if x=="2002" else 0) data["2003"] = data["date_local"].apply(lambda x: 1 if x=="2003" else 0) data["2004"] = data["date_local"].apply(lambda x: 1 if x=="2004" else 0) data["2005"] = data["date_local"].apply(lambda x: 1 if x=="2005" else 0) data["2006"] = data["date_local"].apply(lambda x: 1 if x=="2006" else 0) data["2007"] = data["date_local"].apply(lambda x: 1 if x=="2007" else 0) data["2008"] = data["date_local"].apply(lambda x: 1 if x=="2008" else 0) data["2009"] = data["date_local"].apply(lambda x: 1 if x=="2009" else 0) data["2010"] = data["date_local"].apply(lambda x: 1 if x=="2010" else 0) data["2011"] = data["date_local"].apply(lambda x: 1 if x=="2011" else 0) data["2012"] = data["date_local"].apply(lambda x: 1 if x=="2012" else 0) data["2013"] = data["date_local"].apply(lambda x: 1 if x=="2013" else 0) data["2014"] = data["date_local"].apply(lambda x: 1 if x=="2014" else 0) data["2015"] = data["date_local"].apply(lambda x: 1 if x=="2015" else 0) data["2016"] = data["date_local"].apply(lambda x: 1 if x=="2016" else 0) data["2017"] = data["date_local"].apply(lambda x: 1 if x=="2017" else 0)

После преобразований размерность набора данных была значительно увеличена, так как возросло число параметров с 22 до 114.

Ниже приведу фрагмент (1/4 часть корреляционной матрицы конечного набора данных):

image
Модель предсказания:

В качестве инструмента для построения гипотезы предсказания я остановил свой выбор на линейной регрессии. Точность предсказания на исходном наборе данных составляла от 17% до 22%. Точность предсказания после введения новых переменных и преобразования набора данных составила:

image
Визуализация данных:

Карта США с отображением точек, где проводились измерения:

m = Basemap(llcrnrlon=-119,llcrnrlat=22,urcrnrlon=-64,urcrnrlat=49,         projection='lcc',lat_1=33,lat_2=45,lon_0=-95) longitudes = data["longitude"].tolist() latitudes = data["latitude"].tolist()  x,y = m(longitudes,latitudes)  fig = plt.figure(figsize=(12,10)) plt.title("Polution areas") m.plot(x, y, "o", markersize = 3, color = 'red')  m.drawcoastlines() m.fillcontinents(color='white',lake_color='aqua') m.drawmapboundary() m.drawstates() m.drawcountries() plt.show()    

image
Штаты с наибольшим средним количеством выбросов CO за все время(красной линией отмечен максимально допустим уровень пригодный для жизни):

graph = plt.figure(figsize=(20, 10)) graph = data.groupby(['state_name'])['arithmetic_mean'].mean() graph = graph.sort_values(ascending=False) graph.plot (kind="bar",color='blue', fontsize = 15) plt.grid(b=True, which='both', color='white',linestyle='-') plt.axhline(y=1.2, xmin=2, xmax=0, linewidth=2, color = 'red', label = 'cc') plt.show ();

image
Хронология развития уровня количества выбросов:

image

Источник: habrahabr.ru

Комментарии: