Физики нашли у кубита свойства тепловой машины |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-10-04 19:25 Кубиты, созданные на основе джозефсоновского контакта, можно рассматривать как квантовые тепловые машины. Ученые из Бразилии смогли показать, что такой подход позволяет управлять динамикой образования и нарушения когерентных связей между элементами квантово-компьютерной цепи. Работа опубликована в Physical Review Letters. Квантовые компьютеры используют в своей работе многие необычные свойства квантового мира, такие как запутанность, туннелирование или суперпозицию состояний. Единичным элементом квантового компьютера является кубит, представляющий собой или зафиксированный в ионной ловушке ион, или кольцо из сверпроводника с джозефсоновским контактом, ток по которому может течь в одном из двух противоположных направлений. Согласно принципу Ландауэра, в любой вычислительной системе при стирании информации выделяется тепло. Поэтому и квантово-вычислительные системы могут рассматриваться как тепловые машины, в которых происходят процессы обмена энергии и изменения энтропии. Однако непонятно, от чего зависит КПД такой тепловой машины, и чем определяются ее тепловые потери. В своей работе физики из Бразилии исследовали энергетические изменения, происходящие при циклических процессах в простейшей квантово-вычислительной цепи из двух сверхпроводниковых кубитов. Моделью такой цепи является система из двух квантовых ям, между которыми возможно туннелирование. Ученые предложили рассмотреть систему как тепловую машину, в которой рабочим телом является идеальный квантовый газ, а рабочий объем ограничивается стенками квантовой ямы. Управлять энергией такой системы можно с помощью изменения ширины одной из квантовых ям. Этот процесс аналогичен совершению работы при изменения рабочего объема тепловой машины. Отдельно физики изучили динамику изменения когерентности между двумя квантовыми частицами в неадиабатичесих условиях. Для этого они рассмотрели систему, в которой к основному периодическому колебанию стенки квантовой ямы, которое запускает работу «квантовой тепловой машины», был добавлен классический гауссовский шум. Оказалось, что это действительно приводит к экспоненциальному затуханию амплитуды когерентности, которая через 80 циклов работы не превышает уровень шума. По словам ученых, приведенные ими оценки для энергетических потерь в процессе работы квантово-вычислительной цепи помогут создать системы для управления процессами образования и нарушения когерентной связи между квантовыми элементами. Это может оказаться важно, например, для молекулярных машин, в которых квантовая когерентность может повысить эффективность работы, как это происходит, например, в биологических системах, осуществляющих фотосинтез. Термодинамика определяет работу и других квантовых систем, работа которых основана на использовании кубитов, например, именно термодинамические принципы приводят к ограничению точности работы квантовых часов. Александр Дубов Источник: nplus1.ru Комментарии: |
|