ML Grid — библиотека машинного обучения в Apache Ignite |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-09-05 18:32
Возможности новой библиотеки машинного обучения Apache ML Grid В релиз Apache Ignite 2.0 вошла бета-версия библиотеки машинного обучения Apache Ignite Machine Learning Grid (ML Grid), основанная на высокооптимизированном и масштабируемом API Apache Ignite Memory-Centric Platform. О том, на что способна новая библиотека и как с ней работать, наш рассказ под катом. В релизе 2.0 библиотека включает в себя, в основном, базовую функциональность, такую как локальные и распределенные операции векторной и матричной алгебры с использованием как обычных, так и разреженных структур данных. Сами данные могут храниться в обычной памяти JVM, в off-heap памяти и в распределенном кэше Ignite. Тем, кто уже использовал другие популярные библиотеки машинного обучения, такие как Apache Mahout или Colt, многие вещи будут знакомыми. Это не случайно — одной из целей при проектировании Apache Ignite ML Grid API была простота использования для тех, кто уже привык к типичным библиотекам машинного обучения. Многие пользователи уже применяли Ignite для ускорения матричных и векторных операций ещё до появления ML Grid. Ignite позволяет совместное использование Compute- и Data-гридов для высокоэффективной обработки разреженных наборов данных. А с появлением ML Grid делать это будет намного легче. В следующих релизах планируется дальнейшее расширение функциональности библиотеки, в частности, включение распределенных версий популярных алгоритмов, используемых при решении задач машинного обучения. Основываясь на алгоритмах распределенной алгебры в релизе 2.0, сообщество Apache Ignite планирует добавить в библиотеку алгоритмы классификации, регрессионного анализа, кластерного анализа по k-средним, деревья принятия решений и др. Многое из этого включено в ближайший следующий релиз 2.1 (в частности, линейная регрессия и k-средние). В более отдаленных планах обсуждается разработка Python- и R-библиотеки в составе стека Ignite ML. Возможности, предоставляемые новым модулем, пока что довольно скромные: как уже говорилось, это бета-версия, имеющая, в основном, базовую функциональность. А если вы хотите научиться использовать новый API уже сейчас, не дожидаясь следующих релизов, то для вас — вторая часть нашего поста, под спойлером… Как работать с ML Grid в Ignite Apache 2.0 Как работать с ML Grid в Ignite Apache 2.0 Наверное, самый быстрый способ начать знакомство и работу с ML Grid — это собрать, прогнать и изучить результаты выполнения и кода примеров, включённых в релиз. Примеры ML можно найти в директории examples дистрибутива Apache Ignite. Можно также получить код примеров по этой ссылке в Github. Пошаговая инструкция для начала работы с примерами:
Примеры ML Grid не требуют никакой специальной конфигурации. Всех их можно просто запускать, прогонять и останавливать, а результат будет выводиться в консоль автоматически, без какого-либо вмешательства пользователя. В дополнение к сказанному, при выполнении примера Tracer API запускается браузер, в котором дополнительно выводится результирующий HTML. Также в javadocs вы можете найти документацию об использовании классов и методов ML Grid. Сборка из исходного кода Jar-сборка последней версии Apache Ignite ML Grid доступна в репозитории Maven. Можно также самостоятельно собрать библиотеку из исходного кода:
При необходимости можно обратиться к дополнительной документации в файлах DEVNOTES.txt в корневой директории проекта и README в директории ML-компонента ignite-ml. Источник: habrahabr.ru Комментарии: |
|