Роботы научились ходить путем проб и ошибок |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-08-02 10:05
Исследователи из Канады и Сингапура разработали алгоритм, который позволяет двуногим виртуальным роботам обучаться хождению и бегу путем проб и ошибок, подобно тому как тем же навыкам обучаются люди. Ученые считают, что впоследствии этот алгоритм можно использовать и при обучении реальных роботов, а также при создании компьютерной анимации в играх и фильмах. Алгоритм был представлен на конференции по компьютерной графике SIGGRAPH 2017, а его подробное описание доступно на сайте Университета Британской Колумбии.
Раньше для обучения компьютерных программ или роботов каким-либо действиям инженерам приходилось «вручную» прописывать в кодах программ поведение и реакцию на те или иные условия. В последние десятилетия все чаще применяется другой подход — машинное обучение. Оно позволяет обучаемым алгоритмам не только следовать заранее заданным алгоритмам, но и самостоятельно искать наиболее оптимальный, на их взгляд, метод решения задачи. Канадские инженеры решили применить эту стратегию для создания компьютерных персонажей и роботов, которые эффективно и реалистично ходят на двух ногах. Для этого они использовали глубокое обучение с подкреплением. Этот вид машинного обучения подразумевает, что обучаемый алгоритм при взаимодействии со средой получает ответ — награду или штраф. Представленная исследователями реализация алгоритма состоит из двух основных компонентов — низкоуровневого и высокоуровневого контроллеров-планировщиков. Низкоуровневый компонент отвечает за планирование конкретных шагов, стиль ходьбы, учитывает параметры близлежащего рельефа. Контроллер высокого уровня отвечал за более долгосрочное планирование — к примеру, позволял роботу планировать свой маршрут с учетом препятствий. Обучение происходит в виртуальной среде с изменяемыми параметрами. Так, робот может находиться на узкой тропе в горах или на льду. Помимо этого, среда менялась динамически. Например, плоские и неподвижные поверхности сменялись подвижной поверхностью наподобие траволатора, также периодически на робота падали кубические блоки разного размера. За счет машинного обучения робот научился ловко и быстро передвигаться в разных условиях и даже пинать мяч к цели. Исследователи считают, что в будущем алгоритм можно будет адаптировать для множества задач, не только связанных с робототехникой. К примеру, с его помощью можно будет создавать анатомически точные анимации движения людей в играх и фильмах с применением компьютерной графики, чтобы заменить используемые сегодня камеры и датчики захвата движения. Несмотря на то, что существуют и другие системы обучения алгоритмов в виртуальных пространствах, перенос навыков в реальный мир или между роботами разной конструкции представляет собой серьезную проблему. Недавно специалисты из Массачусетского технологического института заявили, что частично решили эту проблему и создали систему, которая облегчает перенос навыков между роботами разной конструкции. Григорий Копиев Источник: nplus1.ru Комментарии: |
|