"Живая" нейросеть: российские учёные сращивают нейрон с микросхемой |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-08-29 17:45 Учёные из Национального исследовательского Нижегородского государственного университета имени Н. И. Лобачевского работают над созданием адаптивного нейроинтерфейса, состоящего из сопрягающихся нейрональных сетей мозга и электронных нейроморфных систем на основе мемристоров. Эта работа является одной из первых попыток совместить живую биологическую культуру с биоподобной нейронной сетью. В 1971 году в статье профессора Калифорнийского университета Леона Чуа (Leon Chua) был впервые упомянут мемристор — ещё один элемент электрических цепей наряду с сопротивлением, индуктивностью и ёмкостью. Об этом определении до сих пор спорят, как спорят и насчёт фундаментального вопроса: что такое мемристор? Изначально он был придуман как новый элемент электрических цепей, но сейчас многие считают, что мемристор несёт в себе определённое расширение функциональных возможностей резистора: мемристор — это "резистор с памятью".
В отличие от обычного резистора, который определяет линейную зависимость тока от напряжения, мемристор — нелинейный элемент, сопротивление которого зависит от "предыстории", — например, от того, какой ток через него протекал. Он как бы "запоминает", что через него пропускали, и его состояние меняется в зависимости от этого. Такое адаптивное поведение мемристора очень схоже с тем, что мы можем встретить в природе, — в частности, в нервной системе, где эту роль играет синапс (место контакта между двумя нейронами). Соответственно, биоподобные мемристорные системы — это системы, для которых базовым элементом является мемристор. Что касается устройств таких систем, здесь могут существовать разные подходы, и учёные ННГУ предлагают свой вариант. Ими разрабатывается адаптивный нейроинтерфейс, в котором, с одной стороны, присутствует живая культура, а с другой — нейросеть на основе мемристоров. Мемристорные нейронные сети будут сопряжены с многоэлектродной системой регистрации и стимуляции биоэлектрической активности культуры нейронов, выполняющей функцию анализа и классификации сетевой динамики живых клеток. В данный момент учёные исследуют возможность построения обратной связи, в рамках которой выходной сигнал с мемристорной сети будет применяться для стимуляции биологической сети, то есть впервые реализуется процесс обучения живой клеточной культуры. Для эксперимента специалисты используют искусственно выращенную нейрональную культуру клеток мозга. Хотя гипотетически можно также использовать и срез живой ткани.
"Мы пытаемся создать прототип нейронной сети на основе мемристоров, которая по своему внутреннему устройству и функциональности подобна биологической нервной системе. Благодаря локальности мемристивного эффекта (соответствующие явления происходят в наномасштабе) и использованию современных стандартных технологий микроэлектроники, можно будет получить на одном чипе большое количество нейронов и синапсов", — рассказывает заведующий Лабораторией физики и технологии тонких плёнок НИФТИ ННГУ имени Н. И. Лобачевского Алексей Михайлов. По его словам, это отдалённая перспектива, к которой мы стремимся. "То есть на кристалле, на чипе можно "вырастить" человеческий мозг. Пока мы делаем вещи попроще: пытаемся создавать гибридные электронные схемы, в которых какие-то функции реализуются на базе традиционной электроники (транзисторы), а какие-то новые функции, которые трудно реализовать в железе, обеспечиваются на основе мемристоров", — добавляет учёный. Как сообщает РИА Новости, цель проекта — создание компактных электронных устройств на основе мемристоров, воспроизводящих свойство синаптической пластичности и функционирующих в составе биоподобных нейронных сетей в сопряжении с живыми биологическими культурами. Применение гибридных нейросетей на основе мемристоров открывает удивительные перспективы. Во-первых, мемристор может помочь уместить мощности современных суперкомпьютеров на одном чипе. Во-вторых, можно будет создавать роботов, управляющих искусственно выращенной нейрональной культурой. В-третьих, такие "мозгоподобные" системы могут использоваться для замещения части живой нервной системы электронной в случае её повреждения или заболевания. Тем временем американское Агентство по перспективным оборонным научно-исследовательским разработкам (DARPA) создаёт интерфейс, подключающий человеческий мозг напрямую к компьютерной системе. Той же технологией уже заинтересовался Илон Маск, основатель SpaceX и Tesla Motors. Также мы рассказывали о другом интересном исследовании в этой области: инженеры представили интерфейс мозг-компьютер для дистанционного управления движениями черепахи, которое осуществляется силой мысли. Источник: www.vesti.ru Комментарии: |
|