Как мы видим

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2017-08-03 22:00

Головной мозг

Зрение- самый важный источник получения информации о внешнем мире для человека. По данным ученых от 80 и до 90% всей информации о внешнем мире мы получаем через зрительный анализатор. Зрительный анализатор состоит из оптической системы глаза, проводящих путей и нервных центров, обеспечивающих восприятие, анализ и интеграцию зрительных раздражений. Анатомически зрительный анализатор состоит из периферического отдела, включающего фоторецепторный аппарат сетчатки глаза, зрительный нерв и зрительный тракт, и центрального отдела, включающего подкорковые и стволовые центры (латеральное коленчатое тело, подушка таламуса, верхнее двухолмие), зрительную лучистость и зрительную область коры полушарий большого мозга (цитоархитектонические поля 17, 18 и 19).

Оптическая система глаза. Глазное яблоко состоит из трех оболочек: наружная – фиброзная, включающая роговицу и склеру, средняя- сосудистая, в которой выделяют три части: радужку, ресничное тело и собственно сосудистую оболочку, и внутренняя- сетчатка. Помимо оболочек в глазном яблоке выделяют еще ряд образований: хрусталик, ресничное тело и стекловидное тело. В целом глазное яблоко представляет собой оптическую систему глаза. Оптическая система глаза обеспечивает построение изображения на сетчатке и определяет остроту зрения человека, которая представляет собой способность глаза дифференцировать детали изображения. Периферическая частью зрительного анализатора является сетчатка, а точнее фоторецепторы, расположенные в ней. Фоторецепторы реагируют на кванты света и преобразуют зрительную информацию в нервные импульсы для передачи ее по зрительным путям в ЦНС.

Периферическим отделом зрительного анализатора являются фоторецепторы, расположенные в сетчатке глазного яблока. Существует 4 вида фоторецепторов: один вид палочек и три вида колбочек. В сетчатке выделяют 10 слоев, она инвертирована, т.е. кванты света могут достигнуть фоторецепторов, только пройдя через все слои сетчатки, расположенные кпереди от рецепторного слоя (лишь в области центральной ямки все эти слои сдвинуты и свет сразу попадает на колбочки, составляющие основу этой части сетчатки). В глазу палочек во много раз больше колбочек, причем колбочки расположены в основном в центре, а палочки на периферии. Палочки имеют более высокую световую чувствительность и обеспечивают сумеречное зрение, колбочки – дневное зрение.

Фоторецепторы состоят из двух сегментов- наружного и внутреннего с митохондриями, обеспечивающими образование энергии. Наружный сегмент выполняет функции поглощения квантов света и генерации нервного импульса. Генерация нервного импульса происходит за счет изменения структуры определенных пигментов внутри фоторецепторов (родопсин в палочках, йодопсин в колбочках), в результате изменения структуры этих соединений в фоторецепторах запускается каскад реакций (если интересна цепочка реакций в каскаде пишите в комментарии, распишу ее там), который в свою очередь генерирует нервный импульс.

Импульс с фоторецепторов переходит на биполярные клетки и на горизонтальные клетки, при этом снижается активность тормозных клеток. Следует отметить, что несколько колбочек конвергируют (сходятся) на одной биполярной клетке, а в центральной ямке одна ямка связана с одним биполярным нейроном. Все это обеспечивает хорошую разрешающую способность зрительной ямки в формировании четкого изображения. С биполярных клеток импульс переходит на ганглиозные клетки, аксоны которых формируют зрительный нерв, информация по которому передается в ЦНС. Зрительные нервы по выходу их из зрительного канала образуют перекрест (хиазма), в котором часть нервных волокон одного нерва переходят на противоположный нерв и наоборот.После хиазмы образуются зрительные тракты, каждый из которых содержит нервные волокна, идущие от обоих глаз. Тракты идут к латеральным коленчатым телам. На этом уровне происходит выделение сигнала из шума, подчеркиваются контуры объекта, его цвет и границы. В латеральных коленчатых телах начинается бинокулярное взаимодействие от сетчатки правого и левого глаза. Здесь происходит взаимодействие сигналов, идущих от сетчатки, с сигналами из зрительной коры, таламуса и ретикулярной формации, что обеспечивает процессы избирательного зрительного внимания. От латеральных коленчатых тел информация поступает к коре большого мозга. Часть зрительных путей проводит сигналы от сетчатки к ретикулярной формации, к ядрам гипоталамуса для управления циркадными ритмами (сон/бодрствование), регуляции функций эндокринной и вегетативной нервной системы (прежде всего ее симпатического отдела); к нейронам претектальной области и верхних бугорков четверохолмия- для регуляции диаметра зрачка и аккомодации зрения через ядра и волокна вегетативной нервной системы; для регуляции движений глаз через стволовые волокна и волокна пар черепно-мозговых нервов; к нейронам ядер вестибулярной системы и мозжечка для организации компенсаторных движений глаз при изменениях положения головы и тела в пространстве.

Попав в кору больших полушарий импульс проходит несколько полей. Первичная сенсорная (стриальная) кора локализуется в затылочной области (поле 17). Она играет главную роль в формировании зрительных образов. Нейроны этого уровня форматируют все зрительное поле на отдельные квадранты с последующей оценкой положения объекта в поле зрения. Далее информация идет в престриальную кору (поля 18 и 19), здесь формируется объемное мобильное изображение, обладающее свойствами инвариантности, т.е. узнаваемое в любом размере и положении. В коре осуществляется слияние изображения от сетчатки обоих глаз в единое целое, что улучшает восприятие глубины пространства. Функциями зрительной коры являются обнаружение зрительного стимула, определение его формы, локализации в пространстве, контраста, размеров, цвета, направления движения и формирование зрительного образа. Восприятие других параметров трехмерного мира осуществляется при участии экстрастриальных областей (18 и 19), теменной (7), лобной (6 и 8) и других отделов коры больших полушарий. Совместная работа первичной зрительной и перечисленных областей коры, обеспечивает распознавание зрительных объектов, зрительное внимание, выполнение целенаправленных действий под зрительным контролем.

Зрительный аппарат является сложно организованной совокупностью различных структур, обеспечивающих нам восприятие электромагнитных колебаний определенного участка спектра, передачу, обработку зрительной информации и формирование зрительных ощущений. Нарушения на любом из уровней в зрительном аппарате ведет к нарушению его работы вплоть до полной потери зрения, лишь организованная работа многих структур позволяет нам наслаждаться картиной этого мира.

Комментарии: