Как белок нетрин подсказывает аксонам, куда им расти |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-08-30 16:40 Рис. 1. «Портрет героя». Структура свободного нетрина-1 с двух сторон. LN-домен показан голубым, LE-1 (первый модуль LE-домена) — зеленым, LE-2 — розовым, LE-3 — красным, LC не показан вовсе. Во врезке — связывание участка LN-домена с ионом кальция, необходимое для достижения нетрином правильной конформации. Буквы и цифры обозначают аминокислоты и их порядковые номера в белке. Изображение из обсуждаемой статьи в Science Клетки общаются друг с другом с помощью химических сигналов. Выделяя те или иные вещества, клетка может «подзывать» к себе другие клетки либо «отпугивать» их, сообщать им различные сведения, «звать на помощь» клетки иммунной системы в случае атаки патогенов. Химическое общение между клетками играет важнейшую роль во множестве клеточных процессов. Мы рассмотрим подробно один из таких процессов — аксональное наведение — и роль в нем «химической подсказки» — белка нетрина. Связываясь с разными рецепторами, нетрин образует совершенно разные комплексы, что приводит к разным каскадам реакций, которые могут по-разному поворачивать конус роста аксона. Аксональное наведение — это сложный процесс, в результате которого аксон прорастает в нужное место, а не куда попало. Нечего и говорить о том, какая тут нужна точность — представьте себе, например, путешествие аксона от спинного мозга до пятки. Или — менее наглядный, но более важный пример — образование правильных связей между нейронами в головном мозге, без которого мозг работать не будет (о том, насколько это сложно, запутанно и интересно, можно прочесть в статье Blue Brain Project: как все связано?). Самый кончик аксона — конус роста — чрезвычайно подвижное и, можно сказать, любопытное образование. Он нашпигован рецепторами к так называемым «химическим подсказкам» — веществам, которые окружают аксон снаружи и сообщают, куда ему расти. Предполагается, что связывание рецептора на конусе роста с химической подсказкой вызывает каскады реакций, приводящие к перестройке цитоскелета и повороту конуса роста — а значит, к изменению направления роста аксона. Так и представляешь себе, как конус роста «ловит» сигналы от разных подсказок, вертится из-за этого в разные стороны и наконец, выбрав итоговое направление, поворачивает туда весь аксон. Химические подсказки могут находиться на поверхности окружающих аксон клеток или выделяться этими клетками в окружающую среду. Если они прикреплены к поверхности клеток, то могут действовать только при непосредственном соприкосновении этих клеток и конуса роста; если же они выделяются в окружающую среду, то дальность их действия повышается. Большинство химических подсказок играет роль не только в аксональном наведении, но и в других процессах, например в прорастании кровеносных сосудов — ангиогенезе. Есть несколько классов химических подсказок:
Как вы уже, наверное, заметили, некоторые из вышеописанных молекул выполняют только одно действие — например, только отпугивают аксон, в то время как другие умеют и привлекать, и отпугивать аксоны в зависимости от конкретных условий, прежде всего от наличия на поверхности конуса роста тех или иных рецепторов. В результате аксон, на конусе роста которого находятся «привлекательные» рецепторы к этой молекуле, прорастет туда, где находится данная химическая подсказка, а аксон, на конусе роста которого рецепторы «отталкивающие», будет избегать места с этой подсказкой как чумы. Причем вокруг конуса роста много разных подсказок, а на самом конусе много разных рецепторов, и в результате все полученные сигналы суммируются, и аксон прорастает туда, куда ему показывает итоговый вектор. Большая интернациональная группа ученых задалась целью подробней исследовать один из классов химических подсказок — нетрины — и разобраться на молекулярном уровне, как этим молекулам удается так противоположно действовать на аксоны. Сама по себе работа не представляет особого интереса для широкой публики, но на ее примере хорошо видны правила, по которым взаимодействуют друг с другом белки, и то, как эти взаимодействия могут влиять на жизнь клетки. В работе рассматривались:
Одна молекула нетрина в принципе не в состоянии связаться с одной молекулой неогенина: линкер между нетринсвязывающими доменами неогенина не может так растянуться, чтобы прилипнуть к нужным доменам нетрина. Поэтому нетрины-1 образуют с рецепторами комплексы, в которых несколько нетринов связываются с несколькими молекулами рецепторов. Комплекс, который нетрин-1 образует с неогенином, состоит из двух молекул нетрина и двух молекул рецептора. Нетрин при этом практически не меняет свою конформацию по сравнению со свободным состоянием. Два нетрина встают крест-накрест и сцепляются своими срединными LE-2 доменами, а к их концам присоединяются два параллельно расположенных неогенина (рис. 2). Рис. 2. Связывание нетрина-1 с неогенином в тетрамерный комплекс (А). Во врезках подробнее показаны образующиеся связи: между LN-доменом нетрина и FN4-доменом неогенина (две связи в двух концах комплекса, В), между LE3-доменом нетрина и FN5-доменом неогенина (тоже две связи в двух концах комплекса, С) и, наконец, между двумя LE2-доменами двух нетринов (одна связь в самой середине комплекса, D). Изображение из обсуждаемой статьи в Science У DCC линкерный (соединяющий два домена) регион между доменами FN4 и FN5 короче, чем у неогенина, и потому он не может связываться с нетрином-1 в такой красивый тетрамерный комплекс, как неогенин. Вместо этого нетрины и DCC чередуются в длинных (теоретически — бесконечных) цепочках (рис. 3). При этом молекулы DCC в этих цепочках расположены параллельно друг другу, так же, как и молекулы неогенина в вышеописанном комплексе. Рис. 3. Комплекс между нетрином-1 и DCC (А). Во врезках (В и С) сравниваются связи, образуемые одинаковыми доменами нетрина с DCC и нетрина с неогенином. Видно, что образуемые связи практически идентичны; но из-за более короткого линкера DCC не может образовать с нетрином такую же тетрамерную структуру, как неогенин, а образует вместо этого длинную-длинную цепочку (D). Изображение из обсуждаемой статьи в Science Исследователи предположили, что, поскольку связи между нетрином-1 с DCC и нетрином-1 с неогенином практически идентичны, возможна ситуация, когда нетрин одним концом сцепляется с одним своим рецептором, а другим — с другим. Кроме того, не будем забывать и об «отталкивающем» рецепторе для нетрина-1 — Unc-5. Судя по всему, он присоединяется к LE2-домену нетрина (см. статью R. P. Kruger et al., 2004. Mapping Netrin Receptor Binding Reveals Domains of Unc5 Regulating Its Tyrosine Phosphorylation). В результате помимо двух вышеописанных структур могут получаться другие, в которых нетрины, неогенины, DCC и UNC5 слипаются друг с другом в самых причудливых сочетаниях, что приводит к самым разнообразным последствиям: различные изменения конформации рецептора приводят к разным каскадам реакций, которые могут совершенно по-разному поворачивать конус роста аксона. Похожим образом могут работать и другие сигнальные молекулы, чьи эффекты отличаются в зависимости от того, на какие рецепторы им довелось попасть. Источник: Kai Xu, Zhuhao Wu, Nicolas Renier et al. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism // Science. 2014. V. 344. P. 1275–1279. Вера Башмакова Источник: elementy.ru Комментарии: |
|