4 главных вопроса о квантовых компьютерах

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Новые задачи требуют все более сложных вычислений, в то время как многие вычислительные алгоритмы несовершенны. Например, при подготовке алгоритмов искусственного интеллекта, большая часть информации теряется из-за вычислительных ограничений, что делает их менее эффективными. Квантовые компьютеры позволят нам справиться со сложными задачами. Существуют ли квантовые компьютеры, как они работают и какие проблемы с ними возникают – в материале "Футуриста"

Что такое квантовый компьютер и зачем он нужен?

Обычные компьютеры работают по принципу вычислительных машин Тьюринга – с битами, которые находятся в одном из двух состояний: 0 или 1. У квантовых компьютеров таких ограничений нет: информация в них зашифрована в квантовых битах (кубитах), которые могут содержать суперпозиции обоих состояний. Например, 20% – 1, 80% –0. Благодаря этому свойству, квантовый компьютер может выполнять несколько вычислений одновременно, в то время как машина Тьюринга – только одно. 300 обычных битов дает 600 (2*300) возможных состояний, в то время как 300 кубитов – 2300. Носителями информации выступают элементарные частицы: атомы, ионы, фотоны или электроны, имеющие два квантовых состояния. Во время измерений эти состояния могут меняться непредсказуемым образом: мы можем получить как 0, так и 1. Необходимо провести десятки тысяч измерений, чтобы понять, что соотношение действительно 20% и 80%. Но квантовая механика знает способы обойти эти измерения и передать информацию сразу.

Квантовые системы нужны для работы с большими данными. Они могут упростить расчеты свойств отдельных молекул, а также поиск новых лекарств и материалов. Постепенно появляются квантовые нейросети. А физики из Российского квантового центра впервые запустили квантовый блокчейн — инструмент для создания распределенной базы данных, в которой практически невозможно подделать записи.

Как происходит передача информации?

Используется явление квантовой запутанности. Две частицы, электрон или фотон, которые одновременно испускает один и тот же источник, находятся в так называемом запутанном (или сцепленном) состоянии. Они несут одновременно правую и левую поляризации, но в момент измерения они принимают определенную поляризацию – причем всегда будут противоположны друг другу. То есть, если мы смотрим на один фотон, и он принимает левую поляризацию, то у другого фотона будет правая поляризация – и наоборот. Предсказать, какую поляризацию примет та или иная частица, невозможно.

Альберт Эйнштейн считал квантовую запутанность нелепой выдумкой и называл ее «жутким действием на расстоянии». Он предложил разнести эти частицы на большое расстояние. Если мы наблюдаем за одним из фотонов, то второй фотон должен получить информацию о факте измерения, чтобы сменить свою поляризацию. В теории относительности это происходит не сразу, а по прошествии некоторого времени, иначе нарушится главное правило — скорость передачи информации превысит скорость света. Но в квантовой механике второй фотон должен получить информацию моментально — иначе в какой-то момент поляризация частиц будет одинакова. Это противоречие назвали парадоксом Эйнштейна — Подольского — Розена (ЭПР-парадокс). Физики долго спорили, как его разрешить. В итоге решили, что смена поляризации — это случайный процесс, и никакой передачи информации не происходит, поэтому принципы относительности формально не нарушаются.


В 1993 году в IBM Research был проведен эксперимент, известный как квантовая телепортация. Ученые из IBM показали, что квантовая запутанность не только является реальным явлением, но и может быть превращена во что-то гораздо более полезное, чем кто-либо осмеливался предположить. Для передачи информации приходится измерять состояние частиц — но по законам квантовой физики измерение разрушает это состояние, и восстановить его невозможно. Телепортация использует явление квантовой запутанности и дает возможность перенести некое состояние, обладая минимальной информацией о нем — не «заглядывая» в него и тем самым не нарушая его.

Допустим, нам нужно передать состояние фотона А получателю — то есть сделать так, чтобы у получателя оказалась в распоряжении частица B в том же самом состоянии. Как это сделать? Рождаются два "запутанных" фотона, В и С. Один (С) направляется к передатчику, а другой (В) — к приемнику. Напомним, состояние фотонов не определено, и наблюдаемое значение действительно только в момент измерения. У передатчика, таким образом, есть система частиц А и С. Измеряя эту систему, он может получить один из четырех возможных исходов.

Мы помним, что при измерении состояние фотонов меняется. И, когда мы получили данные о частицах А и С, мы изменили состояние всей системы — ведь B была "спутана" с С. Таким образом, состояние B связывается с А — но получатель пока не знает, что конкретно произошло. Как это выяснить? Дело в том, что в квантовой телепортации используются два канала связи, классический и квантовый. Квантовый связывает частицы A и B, между которыми идет передача информации. А с помощью классического передатчик отправляет частице B данные об измерении AC — 2 бита информации. С их помощью получатель может восстановить данные об исходном состоянии частицы А.

Существуют ли квантовые компьютеры?

Да. D-Wave, которая использует урезанную форму квантовых вычислений (квантовая нормализация или отжиг), продает коммерческую версию своей машины. Известны мелкие квантовые компьютеры Google и IBM, причем IBM позволяет людям получать доступ к своему компьютеру через облако (проект Quantum Experience для компьютера с пятью кубитами). Также сейчас ведется работа над первым коммерческим сервисом квантовых облачных вычислений — IBM Q. Для него разработали 17-кубитное устройство с низким уровнем ошибок. Позднее работу сервиса будет обеспечивать универсальный квантовый компьютер с примерно 50 кубитами.

В июле 2017 года российско-американская группа физиков под руководством Михаила Лукина, сооснователя Российского квантового центра и профессора Гарвардского университета, объявила о создании программируемого 51-кубитного квантового компьютера. На сегодня это самая сложная подобная система из существующих.

Однако пока квантовые компьютеры находятся лишь на первых стадиях своего развития. Пятикубитные системы может моделировать и обычный настольный компьютер. Кроме того, для надежной работы квантового компьютера требуется очень низкий уровень ошибок. Эти ошибки возникают из-за декогеренции (распада суперпозиции), или из-за взаимодействия кубитов друг с другом. Из-за этого наращивать число кубитов очень сложно. Лишь недавно ученые научились обнаруживать такие ошибки автоматически: в 2015 году IBM разработала четырехкубитный квантовый чип специально для этой задачи.

Опасны ли они?

Криптологи используют ограничения нашей нынешней технологии, чтобы обеспечить безопасность нашей информации и транзакций. Появление квантовых алгоритмов вычислений может сделать наши нынешние стандарты шифрования неэффективными.

Однако эта проблема выглядит надуманной. Квантовая криптография существует еще с начала 90-х. Агентство национальной безопасности Соединенных Штатов начала переходить на квантово-безопасную криптографию. Существует также ряд частных компаний, которые внедряют квантовые системы безопасности. ID Quantique разрабатывает такие системы с 2007 года. В этом году она планирует установить более 200 систем в 15 различных организациях.


Источник: futurist.ru

Комментарии: