Тестирование и обзор Core ML |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-07-05 22:19 На WWDC’17 Apple представила новый фреймворк для работы с технологиями машинного обучения Core ML. На основе него в iOS реализованы собственные продукты Apple: Siri, Camera и QuickType. Core ML позволяет упростить интеграцию машинного обучения в приложения и создавать различные «умные» функции с помощью пары строчек кода. Возможности Core ML С помощью Core ML в приложении можно реализовать следующие функции:
Core ML позволяет легко импортировать в ваше приложение различные алгоритмы машинного обучения, такие как: tree ensembles, SVMs и generalized linear models. Он использует низкоуровневые технологии, такие как Metal, Accelerate и BNNS. Результаты вычислений происходят почти мгновенно. Vision Фреймворк Vision работает на основе Core ML и помогает с отслеживанием и распознаванием лиц, текста, объектов, штрих-кодов. Также доступно определение горизонта и получение матрицы для выравнивания изображения. NSLinguisticTagger С iOS 5 Apple представила NSLinguisticTagger, который позволяет анализировать естественный язык, поддерживает множество языков и алфавитов. C выходом iOS 11 класс усовершенствовали, теперь ему можно скормить строку с текстом на разных языках и он вернет доминирующий язык в этой строке и еще много других улучшений. NSLinguisticTagger тоже использует машинное обучение для глубокого понимания текста и его анализа. Core ML Model На промо странице Core ML Apple предоставила 4 модели. Все они анализируют изображения. Модели Core ML работают локально и оптимизированы для работы на мобильных устройствах, сводя к минимуму объем используемой памяти и энергопотребление. Рабочий способ загружать модели во время выполнения:?
Работоспособность после выпуска приложения в App Store не протестирована. Особенности Core ML
Тестируем Core ML Я подготовил тестовый проект с использованием Core ML. Мы сделаем простой локатор котов, который позволит отличить все в этой вселенной от кота. Создаем проект и выбираем Single View Application. Предварительно нужно скачать Core ML модель, которая и будет анализировать объекты с камеры. В этом проекте я использую Inception v3. Далее нужно перенести модель в Project Navigator, Xcode автоматически сгенерирует интерфейс для нее. Нам нужно вывести изображение с камеры в реальном времени, для этого создадим AVCaptureSession и очередь для получения новых кадров DispatchQueue. Добавим на наш View слой AVCaptureVideoPreviewLayer, на него будет выводится изображение с камеры, также нужно создать массив VNRequest — это запросы к Vision. Сразу в viewDidLoad проверим доступность камеры.
Далее настраиваем cameraInput и cameraOutput, добавляем их к сессии и стартуем ее для получения потока данных.
Теперь нам нужно инициализировать Core ML модель для Vision и настроить запрос.
Создаем метод, который будет обрабатывать полученные результаты. С учетом погрешности, берем 3 наиболее вероятных по мнению модели результата и ищем среди них слово cat.
Последнее, что нам осталось сделать – добавить метод делагата AVCaptureVideoDataOutputSampleBufferDelegate, который вызывается при каждом новом кадре, полученном с камеры. В нем мы конфигурируем запрос и выполняем его.
Готово! Вы написали приложение, которое отличает котов от всех остальных объектов! Выводы Несмотря на особенности, Core ML найдет свою аудиторию. Если вы не готовы мириться с ограничениями и небольшими возможностями, существуют много сторонних фреймворков. Например, YOLO или Swift-AI. Источник: habrahabr.ru Комментарии: |
|