Энтропия (др.-греч. — поворот, превращение) — фундаментальный научный термин, мера хаоса и неупорядоченности системы

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2017-07-21 07:30

Теория хаоса

Энтропи?я (др.-греч. ???????? — поворот, превращение) — фундаментальный научный термин, мера хаоса и неупорядоченности системы. Проявляется в совершенно разных, на первый взгляд, областях. Настолько разных, что энтропию можно с полным правом назвать одним из главных философских понятий и уникальным физическим: это единственная величина, описывающая направление процесса.

Среди тем, связанных с энтропией, самой большой популярностью пользуется «демон Максвелла», многочисленные отсылки к которому можно встретить в литературе, играх, мультах и кино. Непосредственно «энтропия», а также вытекающая из неё «тепловая смерть Вселенной» тоже довольно востребованы.

Thermodynamics bitch!

Энтропия есть порождение, плоть от плоти, термодинамики. Поэтому нужно сказать пару слов о её маме.

Термодинамика — это раздел физики, изучающий соотношения и превращения теплоты и других форм энергии. Она базируется на нескольких основополагающих принципах, называемых началами (иногда — законами). Первое начало термодинамики — это старый добрый закон сохранения энергии: энергия, а значит теплота, не может появляться из ниоткуда или исчезать в никуда. Куда более меметичным является второе начало термодинамики. Дабы не ебать мозги читателю заумной научной поебенью, вкратце перефразируем определение Рудольфа Клаузиуса: тепло не может самопроизвольно передаваться от менее нагретого тела к более нагретому. От такого перефраза Клаузиус переворачивается в гробу, но для дальнейшего понимания достаточно.

Третье начало термодинамики на пальцах можно объяснить как невозможность достижения абсолютного нуля температуры.

Помимо этих начал есть даже нулевое или общее начало термодинамики — замкнутая система независимо от начального состояния в конечном итоге приходит в состояние термодинамического равновесия и самостоятельно выйти из него не может.

Таким образом, термодинамика имеет четыре начала, при этом не имеет ни одного конца, что само по себе уже доставляет.

Вечный двигатель.

Законы термодинамики в пух и прах разбивают заветную мечту человечества. Невозможность вечных двигателей первого рода интуитивно понятна — энергия из ниоткуда не появляется. Для тепловых машин они запрещаются первым началом термодинамики, являющимся альтернативной, специальной формулировкой закона сохранения энергии. Сложнее с вечными двигателями второго рода. Энергия вроде и есть, вот они, молекулы, носятся туда-сюда, но, сцуко, получить её без «холодильника» (по-научному компенсации) невозможно. «Вечные двигатели второго рода невозможны» — ещё одна формулировка второго закона термодинамики.

Рождение мема.

Клаузиус, давший простую формулировку о невозможности передачи тепла от менее нагретого тела к более нагретому, повтыкал в получившуюся формулу. Потом записал её для бесконечно малого изменения теплоты, дунул… Затем решил, что если всё поделить на температуру, то будет более красиво. И стало так, однако, красоту эту неземную могут оценить только познавшие матан и дифференциальные формы. Но для дальнейшего повествования достаточно того, что у системы есть функция, значения которой зависят от её (системы) состояния, и называется эта функция энтропией.

Примерно в том же историческом периоде жил-был и творил Людвиг Больцман. А творил он матан, исходя из молекулярно-корпускулярной теории, это такая теория, где теплота представляет собой движение маленьких молекуло-корпускул (сейчас всё это называется статистической физикой). И надо было ему как-то пришить пизде рукав свои результаты к результатам Клаузиуса, и он таки взял и пришил. Параллельно с этим Больцман подвергся травле (по другой версии — «всё понял») и повесился на шнурке от штор. Поэтому чуть позже идею оформил Макс Планк, и оказалось, что энтропия — это логарифм вероятности нахождения системы в данном состоянии, то есть логарифм количества всевозможных скоростей и положений мелких частиц, приводящих к тому же описанию системы в большом масштабе (всякие там температуры, довления и объёмы). Отсюда возникло понятие энтропии как меры хаоса.

Не будем прибегать к формулам с логарифмами и объясним на пальцах. Вот чашка, у неё есть два состояния. Первое — чашка целая. Чашка может быть тут или там, повёрнута кверху дном или дном книзу, ручкой на север, юг, восток или даже на запад… Второе состояние — чашка разбита. Кусков может быть много, и каждый из них может быть почти в любом месте и как угодно повёрнут. Второе состояние более хаотично, это понятно интуитивно, а ежели посчитать вероятность всех параметров каждого куска чашки в обоих состояниях, то увеличение хаоса, сиречь энтропии, будет видно и на циферьках.

Из второго начала термодинамики следует: чтобы уменьшить хаос (энтропию), к системе нужно что-нибудь приложить, например, работу. Такой поворот вызвал массу смехуёчков, из разряда «физики шутят»: простая уборка в комнате оказывается не домашней рутиной, а борьбой с энтропией. Кроме шуток, в таком определении (как меры хаоса) понятие энтропии распространилось на разные близлежащие области, например, в теорию информации, о чём подробнее ниже.

Демон Максвелла.

Джеймс Максвелл был известным физиком и одновременно троллем 80-го уровня, подобно многим другим своим коллегам. Сам же приложил усилия для создания статистической физики, вписав себя в историю распределением Максвелла, но в то же время придумал парадокс в виде забавной зверушки, демона Максвелла, который эту самую статистическую физику не то чтобы множил на ноль, но подвергал серьёзному сомнению.

Возьмём некий герметичный контейнер, разделённый надвое газонепроницаемой перегородкой, в которой имеется микроскопическая дверца. В начале опыта обе части контейнера равномерно заполнены газом. Теперь поставим к дверце некоего микроскопического вахтёра, который будет открывать дверцу и пропускать, предположим, из левой части в правую только молекулы горячего газа, а молекулы холодного — не пропускать. И наоборот — из правой части в левую он будет пропускать только молекулы холодного газа, и не пропускать молекулы горячего. Через какое-то время газ в контейнере разделится на две части: в одной половине останется холодный газ из медленных молекул, в другой — горячий из быстрых. В итоге система упорядочится по сравнению с исходным состоянием, энтропия уменьшится, и второе начало термодинамики будет нарушено. Более того, разницу температур можно будет использовать для получения работы (гуглим цикл и теорему Карно). А если такого вахтёра оставить на дежурстве навечно (или хотя бы организовать сменное дежурство), то и вовсе получится вечный двигатель.

Сей демон до сих пор живёт в научном фольклоре и волнует умы британских учёных. Ведь вечный двигатель человечеству отнюдь не повредил бы, но вот бида: чтобы демон Максвелла заработал, ему самому потребуется энергопитание в виде притока фотонов, необходимых для освещения приближающихся молекул и их просеивания. Кроме того, просеивая молекулы, демон и дверца не могут не вступать с ними во взаимодействие, в результате чего они сами будут невозбранно получать от них тепловую энергию и наращивать свою энтропию, в итоге суммарная энтропия системы всё равно уменьшаться не будет. То есть таким объяснением теоретическая угроза ВНТ была отведена, но не безоговорочно.

Как и в случае с демоном Лапласа демона Максвелла добила квантовая механика. Для сортировки подлетающих молекул демону нужно измерять их скорость, а сделать это с достаточной точностью он не может в силу принципа неопределённости Гейзенберга. Кроме того, в силу этого же принципа он не может точно определить и местонахождение молекулы в пространстве, и часть молекул, перед которыми он распахивает микроскопическую дверцу, с этой дверцей разминутся. Другими словами, стоит только привести демона в соответствие с законами квантовой механики, и он окажется не в состоянии сортировать молекулы газа и просто перестанет представлять какую-либо угрозу научной картине мира в виде второго начала термодинамики.

А демона жаль — симпатичный был персонаж. Впрочем, смерть демона отнюдь не мешает встречаться с ним каждый день, и не по одному разу. Предположим, какое-то криворукое мудило разлило стакан жижи. Жижа испаряется, при этом медленные молекулы не могут преодолеть силу поверхностного натяжения и остаются, быстрые же улетают — в итоге жижа охлаждается. Всем известно, что при испарении происходит охлаждение. Ой, блджад, это же сортировка молекул жижи по скорости-энергии. Чем не демон Максвелла? Демон, да не тот. Есть два разных, но дополняющих друг друга объяснения. Первое: ВНТ запрещает существование демона (и сортировку молекул) в закрытой системе. А у нас быстрые молекулы улетают в неведомые ебеня. Если же сделать систему закрытой (крышечкой прикрыть и укутать, чтобы тепло снаружи не поступало), то всё быстро устаканится: жидкость и её пары придут в равновесие, испарение прекратится. Второе: молекулы в жиже находились в более упорядоченном состоянии, испаряясь, они переходят в менее упорядоченное. В начальной точке система была в неравновесном состоянии, при переходе же в равновесное состояние энтропия увеличится.

Неубывание энтропии.

Закон вроде бы и прост, да только при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики. Есть в нём одно мерзкое словечко, которому иногда уделяется недостаточно внимания — это словечко «изолированной». Согласно ВНТ, энтропия («хаос») не может убывать только в изолированных системах. Но в других системах это уже не является законом, и энтропия там может как возрастать, так и убывать.

С точки зрения термодинамики существуют системы открытые, закрытые и изолированные. Открытые системы обмениваются веществом (а также, возможно, и энергией) с окружающей средой. Например, автомобиль: потребляет бензин и воздух, выделяет тепло. Закрытые системы не обмениваются веществом с окружающей средой, но могут обмениваться с ней энергией. Например, космический корабль: герметичен, но поглощает солнечную энергию с помощью солнечных батарей. Наконец изолированные (замкнутые) системы не обмениваются с окружающей средой ни веществом, ни энергией. Например, термос: герметичен и сохраняет тепло.

Так вот, поскольку ВНТ применяется исключительно к изолированным системам, то энтропии запрещено уменьшаться только там.

Научные кретинисты креационисты люто, бешено фапают на ВНТ в формулировке «энтропия не убывает», которое якобы доказывает невозможность самопроизвольного возникновения жизни из неживой материи. Интуитивно понятно, что живые организмы более упорядочены, чем неживые. И самопроизвольное возникновении жизни выглядит как нарушение ВНТ: был хаос (…и тьма над бездною, и Дух Божий носился над водою, и далее по тексту), а тут раз — и из неупорядоченной глины появились упорядоченные твари, а потом и человек.

Конечно, если считать, что жизнь возникла одномоментно, или за семь дней, во всем своём великолепии, разнообразии и сложности, то без отца-создателя не обойтись, уж очень невероятное событие, гораздо более невероятное, чем если бы все молекулы воздуха собрались в одном углу комнаты, и креационист задохнулся бы по этой причине. Чтобы разобраться в подвохе, нужно понять, что вопросов тут два. Первый — безблагодатость сложность жизни. Тут всё разжевал дедушка Дарвин, а статистическая физика скромно добавляет: чтобы жизнь размножалась и усложнялась, извне должен быть приток энергии, тогда со вторым законом термодинамики всё будет чики-пуки. Второй вопрос: собственно зарождение жизни. Тут сложнее, внятного ответа от высоколобых учёных нет, есть кое-какие догадки. Но совершенно понятно, что жизнь в текущем виде развилась из чего-то более простого, гораздо более простого, чем клетка. Выдвигают гипотезы про мир-РНК, но и РНК слишком(!) сложно для зарождения. Пока невозможно точно говорить о том, где химия каким-то образом плавно перетекает в биологию. Возможно, предтечей жизни были какие-то химические соединения, способные к неидеальному самовоспроизведению и постепенному добавлению к ним новых, более простых элементов.

Из неубывания энтропии прямо вытекает ещё один мем от дядюшки Клаузиуса. Как следует из формулировки, закон применяется к изолированным системам, но трудно представить себе более изолированную систему, чем Вселенная в целом. А значит, суммарная энтропия Вселенной должна увеличиваться по мере её движения к равновесному, наиболее хаотичному состоянию.

Возникает вопрос: и хули? Если говорить просто, то со временем все звёзды потухнут и разложатся на плесень и липовый мёд. Причём температура всего этого квантового дерьма будет везде одинаковой — чуть выше абсолютного нуля. Вся Вселенная станет тёмной и холодной, что, конечно, не очень приятно.

Впрочем, является ли Вселенная изолированной системой строго не доказано, есть пачка вполне научных гипотез, в которых вселенных много, и они даже могут как-то взаимодействовать друг с другом. Но и обратное тоже не доказано, поэтому проще считать, что Вселенная одна, а значит тепловая смерть неизбежна.

В любом случае переживать не стоит, ведь сия оказия произойдет через каких-то 1010? лет. Да и то не факт, что произойдет. Ведь со времен Клаузиуса с его охуительными теориями появился другой учёный с теориями ещё более охуительными. Из теории относительности Эйнштейна могут следовать целых две версии смерти Вселенной — Большой разрыв (когда всё порвётся на британский флаг, даже небо, даже Аллах!) и Большое сжатие — вся Вселенная снова свернётся в сингулярность. Логично предположить, что процесс цикличен, и за сингулярностью следует очередной «Аллах-Бабах!». Но это уже совсем другая история.


Источник: lurkmore.to

Комментарии: