Лучший видеокурс по нейронным сетям на русском |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-06-25 18:00 машинное обучение python, архитектура нейронных сетей, основы нейронных сетей Искусственные нейронные сети упакованы в удобный видеокурс, который научит новичков и освежит знания тех, кто уже давно прошел базис.
1. Искусственные нейронные сети. Введение Когда используют нейронные сети, и как они работают? Первый урок состоит из ответов на эти вопросы. Работа нейронной сети объясняется с помощью удобных схем, и проводится аналогия с человеческим мозгом. Стоит отметить, что каждый видеоурок дополнен выводами и заданиями. 2. Немного биологии Сравнение с биологической НС при рассмотрении нейрона и синапса позволит понять, как работают искусственные нейронные сети, изучить механизм изнутри. Это все еще относится к разделу базиса и подойдет тем, кто только начал изучать ИНС. 3. В целом об искусственной нейронной сети В уроке затрагивается структура биологических сетей, их мерность, строение ИНС и описание каждого из ее слоев. 4. Искусственный нейрон Нейрон объясняется на примерах, а также рассказывается, что необходимо предпринять, чтобы обучение и работа нейронной сети были корректными. 5. Структура нейронной сети В уроке подробно разобраны этапы работы НС и затрагиваются рекуррентные и feedforward сети, разница между которыми представлена схематически. 6. Нюансы работы нейронной сети Здесь курс проходит переломный момент, когда больший упор делается на практические знания: нормализация и масштабирование, метод «один из N», организация сети, принцип работы скрытого слоя и влияние количества нейронов на результат. 7. Обучение сети Автор курса расскажет о двух этапах жизни ИНС, двух типах ее обучения, проанализирует их с использованием схем и разберет память, без которой искусственные нейронные сети бесполезны. 8. Технология обучения сети. Часть 1 Самая обширная тема разбита на две части. В первой акцент делается на методе наискорейшего спуска. Сюда включены графики, расчет погрешности и визуализированное представление ошибки. 9. Технология обучения сети. Часть 2 Во второй части автор коснется метода обратного распространения ошибки, расскажет об обучающей выборке и начальных значениях весов. Источник: proglib.io Комментарии: |
|