Большие данные и машинное обучение в ритейле |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-05-23 19:01
Константин Баяндин (директор по маркетингу OZON) о том, как машинное обучение предсказывает желания клиентов и помогает продавать больше.
? Предсказательные модели — новый метод использования больших данных в онлайн-рекламе. С его помощью маркетологи пытаются спрогнозировать поведение пользователя задолго до того, как этот пользователь захочет что-то купить. Нечто подобное встречается в фильме «Особое мнение» с Томом Крузом, в котором экспериментальная программа предотвращает будущие преступления. Одним из первых предсказательные модели в России стал разрабатывать и внедрять Константин Баяндин, директор по онлайн-маркетингу и ценообразованию OZON. — Начну с классического вопроса. Когда уже OZON станет прибыльным? — Сейчас рынок ecommerce в России таков, что нужно инвестировать и захватывать всё бо?льшую долю, а отдача будет потом. Когда по стратегии нужно будет стать прибыльным, мы конечно же станем. — Книги по-прежнему основной источник дохода или что-то изменилось? — Книги до сих пор являются одной из топовых категорий в нашей компании, но я могу сказать, что они уже не первые. Есть категории, которые время от времени выходят на первое место. По данным на апрель на первом месте электроника, на втором — товары для дома и дачи. — Твоя должность в OZON называется «директор по онлайн-маркетингу и ценообразованию». Я даже и не припомню, а есть ли похожие должности в digital? Так получилось, что в OZON самые интересные вещи, связанные с бизнесом и с цифрами, лежат в трёх направлениях. Во-первых, это конечно же онлайн-маркетинг, который про цифры, про digital. Во-вторых, это про ценообразование, потому что там очень много можно построить интересных математических моделей. В-третьих, это аналитика и большие данные. Собственно, этими тремя направлениями я и занимаюсь. Скажу так — микс ценообразования и онлайн-маркетинга очень-очень редкий. Честно говоря, не знаю больше других компаний в России или за рубежом, у которых один директор закрывает оба этих направления. — Я прямо физически ощущаю, с каким удовольствием ты произносишь фразу «большие данные». — Это еще со Стэнфорда. В работе я всё больше использую курсы, которые я брал не только в бизнес-школе в Стэнфорде, но и в соседнем здании — в школе инжиниринга, где мне нравились классы по машинному обучению и искусственному интеллекту. — Из Стэнфорда ты вернулся со знаниями о больших данных и сразу же применил их в OZON? — Да. Первое время у меня было ощущение, что я не столько работаю, сколько прохожу практику после обучения. Зато теперь большие данные — это основа, на которой держится маркетинг OZON. Мы чётко понимаем, какую аудиторию хотим таргетировать и для чего, и пытаемся их привлечь на наш сайт. В отделах онлайн-маркетинга и ценообразования основной фокус — это принятие решений на основе больших данных. — Сколько человек занимается маркетингом OZON? — Наш маркетинг состоит из двух больших частей. Одна из них — онлайн-маркетинг, которым управляю я, а вторая — бренд-маркетинг и маркетинговые коммуникации, которыми управляет Лариса Лаврова. Команды примерно одинаковые. В сумме нас 60 человек. — Давай поговорим о практике использования больших данных. Теорию знают многие, а вот применить практически могут не все — не хватает либо реальных знаний, либо рук. Вы используете большие данные для чего? — Например, для создания предсказательных моделей онлайн-рекламы. Гипотеза была следующей — мы хотим дифференцировать наши ставки в зависимости от ожидаемого эффекта той или иной аудитории. ? В традиционной модели мы бы говорили про оптимизацию трафика по ключевым словам в контекстной рекламе. Взяли бы ключевик «купить смартфон» и попытались бы посчитать, сколько нам нужно заплатить, чтобы получить приемлемый ROI. ? В больших данных подход другой. Мы не просто делаем одну и ту же ставку на ключевое слово «купить смартфон», а мы её дифференцируем для разных аудиторий. И такой de-averaging позволяет добиваться большего эффекта и получать лучшую отдачу от инвестиций в маркетинг. — Как это происходит? Вы свою базу клиентов делите на определённые сегменты. Очень тонкая нарезка происходит, правильно? — Традиционный маркетинговый способ — это именно создание каких-то сегментов. Маркетологи очень любят RFM-сегментацию, потому что она работает, и она простая, понятная. Мы тоже так делали 2 года назад. Сейчас применяем другой метод. ? Его суть в том, что мы собираем объясняющие переменные про наших покупателей: что покупал, как давно покупал, через какие каналы приходил, в какой географии находится и так далее. Таких переменных у нас набирается около трёхсот. Затем мы построили модель машинного обучения, которая на исторических данных обучается и по этим трёмстам показателям предсказывает вероятность будущей покупки по каждому из посетителей нашего сайта, который приходил к нам за последние три месяца. Грубо говоря, мы каждую ночь запускаем наши сервера в data-центре, которые на основе той информации, которая обновилась по состоянию на полночь, рассчитывают эти показатели. У нас сейчас десятки миллионов уникальных посетителей, которые проходят через эту машину, и каждый из посетителей получает число, которое отражает вероятность покупки этим человеком, если он завтра придёт к нам на сайт. И дальше можно всех посетителей отсортировать по этому показателю и распределить на сегменты. Таких сегментов у нас 20. Самых платежеспособных мы помещаем в 20-й сегмент, и затем уже по ниспадающей, с расчётом на то, что 10–12 сегменты — это покупатели, которые приносят среднюю для нас выручку за визит. Эти сегменты мы загружаем в системы рекламы — Google, «Яндекс», другие площадки и далее уже работаем по модели cost per click (CPC). Конверсия в сегментах существенным образом отличается во всех рекламных площадках. — Сколько времени заняло внедрение предсказательной системы? — Мы этим проектом занимаемся полтора года. Пробный запуск сделали спустя две недели после начала работы. Всё делали руками аналитиков в SQL, потому что все данные в OZON исторически причёсаны, хорошо собраны и упакованы. А благодаря слаженной работе команды IT все данные были под рукой. В том числе была уже сделана полная интеграция с Google Analytics. Затем мы примерно полгода делали data science research, чтобы понять, какие переменные важны, какие не важны, какими моделями и как предсказывать. И ещё 2 месяца ушло на интеграцию в рекламную площадку. Интеграцию делали совместно с Google и хочу отметить, что мы многому у них научились. — Что получили по результатам внедрения? ? — Из ключевых результатов — это отрицательный churn rate в когортах, значительный рост в продажах через канал поисковой рекламы, мы видим увеличение доли мультикатегорийных покупок в контекстной рекламе. Доля людей, которые покупают больше чем в одной категории, в канале контекста значительно растёт с конца прошлого года. Наши когорты «улыбаются», как это любят говорить аналитики. Мы реактивируем больше покупателей в когорте, чем естественным образом они у нас отваливаются. Наши продажи по не брендовому контексту растут трёхзначными числами, без ухудшения показателей ROI, и это очень хорошо. Благодаря тому, что мы работаем с нашей существующей аудиторией, стараемся увеличивать кросс-продажи в новых категориях. Следующий наш рубеж — это стимуляция роста новых покупателей, благодаря нашему подходу к аудиториям и к данным. Есть сложности, потому что это люди, про которых мы мало чего знаем, они к нам только-только пришли. Но здесь тоже у нас есть идеи, как с этим можно поработать. — Но это не единственное применение предсказательных моделей, верно? Что ещё делаете? ? — Ещё используем предсказательные модели для персонализации сайта и маркетинговых коммуникаций. Если первая гипотеза была «давайте всех разделим по тому, насколько они много купят в будущем», то здесь гипотеза — «давайте попробуем предсказать, в какой категории с большей вероятностью люди купят в течение ближайшего времени». Мы определили 28 основных категорий. Более-менее это первые категории в каталоге на сайте. И мы предсказываем внутри, какая из этих категорий имеет наибольший шанс к покупке для данного конкретного человека. Система изучает человека и генерирует страницу сайта специально для него. Или отправляет email, push, показывает баннер в зависимости от того, какие средства коммуникации, как мы считаем, этот человек предпочитает. Сообщение уходит тем людям, у которых наибольший шанс купить именно в этой категории. Подход в том, чтобы показывать тот креатив, который имеет отношение к категории товаров, наиболее перспективный для данного человека в данный момент. — Я так понимаю, что вы эти данные вычисляете, опять же, на основе исторических данных, которые у вас есть. Вы это предрассчитываете для каждого конкретного пользователя, которого можете идентифицировать? — Такой работающей махины, которая есть в первом кейсе, ещё нет, но мы к этому идём. Мы в паре-трёх месяцах от этого. Мы пока тестировали сегментные подходы, старались на основе данных генерировать сегменты. И в том числе мы тестировали внешние триггеры. Сейчас на рынке есть крупные игроки, которые предлагают внешние триггеры про существующую аудиторию. Например, сегмент родителей, сегмент владельцев кошек, сегмент игроманов. Эти данные в принципе доступны, чтобы их попробовать, и мы пробовали такие вещи. Мы видим, что использование такой категорийной информации позволяет увеличить отдачу в тот момент, когда человек на сайте, читает email или push-нотификацию, на 30–50% процентов и больше. Представьте, что промо email генерирует пару сотен миллионов рублей для компании, и вы можете из этих миллионов рублей сделать в полтора раза больше. Это сразу же больше выручки. — Про маркетинг поговорили, давай теперь про цены. Как работаете с ценообразованием? ? — Это мой самый любимый проект в OZON. Примерно 2,5 года назад мы поставили себе задачу — знать цены конкурентов на бо?льшую часть нашего ассортимента. Каждый день получаем информацию о четырёх сотнях тысяч товаров, которые мы продаём, по более чем сотне конкурентов. Это большой массив информации, который очень аккуратно, скрупулёзно собирается, складируется в базах данных и доступен для того, чтобы им пользоваться. Если говорить про метрики, самая важная метрика — это какая доля наших продаж проходит со знанием того, какие цены на рынке. Мы стремимся увеличивать именно эту долю. Неважно, сколько ты товаров мониторишь, а важно, сколько продаж ты сделал, зная это. У нас две трети продаж проходит по тем товарам, по которым мы знаем хотя бы одну цену конкурента. — Почему эта метрика так важна? ? — Гипотеза очень простая: мы хотим в конечном итоге сделать работу по поиску хорошей цены на конкретный товар за наших покупателей. Мы сами мониторим рынок и сами стремимся сделать цену как можно ниже, чтобы мы были в нижней границе распределения цен на рынке. Конечно же у нас есть показатели того, сколько мы хотим заработать, потому что это всё-таки не благотворительность, а бизнес, но задача — быть именно конкурентными по отношению с самыми большими, крупными и важными игроками в каждой категории. Гипотеза прекрасно подтверждается. Набор доли товаров, которые мы имеем в мониторинге, за последние два года проходил очень быстро. Мы начинали с 5–10%, а сейчас дошли до двух третей продаж. Мы видим, что это очень помогает нашему росту и в первую очередь росту в новых продажах, потому что, когда человек приходит первый раз и у него нет отношений с магазином, очень важно быть конкурентным по цене. Если ты привык к удобству, ты может быть и будешь готов переплатить, но чтобы набрать базу новых покупателей, очень важно быть конкурентным. — А как реагируют производители на подобное? Был случай, когда один крупный производитель аудио не занимался контролем минимальной розничной цены и в результате выпал из товарной матрицы, так как с ним никто не хотел иметь дело. Вы сталкивались с подобным? — Думаю, что определять ценовую политику должен сам бренд. А наша задача — быть конкурентоспособными по цене. Если наши конкуренты продают данный конкретный товар дешевле нас, мы должны продавать его так же, как и они. Мы не можем стоять одиноко в бою и говорить, что есть какие-то абстрактные рекомендации производителя, давайте их соблюдать. — Понятно. В заключение беседы твой прогноз о том, как будет развиваться российский ecommerce в ближайшие 2–3 года. ? — Будет происходить консолидация рынка и будет всё больше и больше борьбы, главным образом между крупными игроками. Крупные игроки так или иначе будут забирать долю у мелких игроков, может быть не продажи, но долю как минимум. Маленьким игрокам нужно будет либо уходить с рынка, либо встраиваться в платформы в виде мерчантов, либо на сайты, которые только этим и занимаются, либо, как OZON, который также позволяет продавать сторонним интернет-магазинам через наш сайт. Это то, что нас ждёт. — Думаю, что небольшие интернет-магазины, которые имеют какую-то очень экспертную и узкую специализацию в конкретной нише, всё-таки останутся. У одного из моих знакомых есть магазин по продаже нижнего белья. Так вот у них продажи через email достигают 48%, что говорит о многом, но в первую очередь о востребованности магазина. — Действительно, да. Мы не коснулись нишевых игроков, и они, конечно же, останутся. Если посмотреть на рынок США, то Amazon там взял треть всех онлайн-продаж, но другие две трети кто-то же продаёт? И это либо продажи через платформу eBay или AliExpress, где мелкие игроки, даже не будучи экспертами в чём-то, просто продают, либо продажи «из гаража». Никуда это не денется, это будет. Комментарии: |
|