Big Data и блокчейн — прорыв в области анализа данных |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-05-26 07:26 Постоянное ускорение роста объема данных является неотъемлемым элементом современных реалий. Социальные сети, мобильные устройства, данные с измерительных устройств, бизнес-информация – это лишь несколько видов источников, способных генерировать гигантские массивы данных. В настоящее время термин Big Data (Большие данные) стал довольно распространенным. Далеко не все еще осознают то, насколько быстро и глубоко технологии обработки больших массивов данных меняют самые различные аспекты жизни общества. Перемены происходят в различных сферах, порождая новые проблемы и вызовы, в том числе и в сфере информационной безопасности, где на первом плане должны находиться такие важнейшие ее аспекты, как конфиденциальность, целостность, доступность и т. д. К сожалению, многие современные компании прибегают к технологии Big Data, не создавая для этого надлежащей инфраструктуры, которая смогла бы обеспечить надежное хранение огромных массивов данных, которые они собирают и хранят. С другой стороны, в настоящее время стремительно развивается технология блокчейн, которая призвана решить эту и многие другие проблемы. По сути, определение термина лежит на поверхности: «большие данные» означают управление очень большими объемами данных, а также их анализ. Если смотреть шире, то это информация, которая не поддается обработке классическими способами по причине ее больших объемов. Сам термин Big Data (большие данные) появился относительно недавно. Согласно данным сервиса Google Trends, активный рост популярности термина приходится на конец 2011 года:
В 2010 году уже стали появляться первые продукты и решения, непосредственно связанные с обработкой больших данных. К 2011 году большинство крупнейших IT-компаний, включая IBM, Oracle, Microsoft и Hewlett-Packard, активно используют термин Big Data в своих деловых стратегиях. Постепенно аналитики рынка информационных технологий начинают активные исследования данной концепции. В настоящее время этот термин приобрел значительную популярность и активно используется в самых различных сферах. Однако нельзя с уверенностью сказать, что Big Data – это какое-то принципиально новое явление – напротив, большие источники данных существуют уже много лет. В маркетинге ими можно назвать базы данных по покупкам клиентов, кредитным историям, образу жизни и т. д. На протяжении многих лет аналитики использовали эти данные, чтобы помогать компаниям прогнозировать будущие потребности клиентов, оценивать риски, формировать потребительские предпочтения и т. д. В настоящее время ситуация изменилась в двух аспектах: — появились более сложные инструменты и методы для анализа и сопоставления различных наборов данных; Исследователи прогнозируют, что технологии Big Data активнее всего будут использоваться в производстве, здравоохранении, торговле, госуправлении и в других самых различных сферах и отраслях. Big Data – это не какой-либо определенный массив данных, а совокупность методов их обработки. Определяющей характеристикой для больших данных является не только их объем, но также и другие категории, характеризующие трудоемкие процессы обработки и анализа данных. В качестве исходных данных для обработки могут выступать, например: — логи поведения интернет-пользователей; Со временем объемы данных и количество их источников непрерывно растет, а на этом фоне появляются новые и совершенствуются уже имеющиеся методы обработки информации. — Горизонтальная масштабируемость – массивы данных могут быть огромными и это значит, что система обработки больших данных должна динамично расширяться при увеличении их объемов. Для стабильной работы всех трех принципов и, соответственно, высокой эффективности хранения и обработки больших данных необходимы новые прорывные технологии, такие как, например, блокчейн. Сфера применения Big Data постоянно расширяется: — Большие данные можно использовать в медицине. Так, устанавливать диагноз пациенту можно не только опираясь на данные анализа истории болезни, но также принимая во внимание опыт других врачей, сведения об экологической ситуации района проживания больного и многие другие факторы. Таким образом наиболее очевидное практическое применение технологии Big Data лежит в сфере маркетинга. Благодаря развитию интернета и распространению всевозможных коммуникационных устройств поведенческие данные (такие как число звонков, покупательские привычки и покупки) становятся доступными в режиме реального времени. Технологии больших данных могут также эффективно использоваться в финансах, для социологических исследований и во многих других сферах. Эксперты утверждают, что все эти возможности использования больших данных являются лишь видимой частью айсберга, поскольку в гораздо больших объемах эти технологии используются в разведке и контрразведке, в военном деле, а также во всем том, что принято называть информационными войнами. В общих чертах последовательность работы с Big Data состоит из сбора данных, структурирования полученной информации с помощью отчетов и дашбордов, а также последующего формулирования рекомендаций к действию. Рассмотрим вкратце возможности использования технологий Big Data в маркетинге. Как известно, для маркетолога информация – главный инструмент для прогнозирования и составления стратегии. Анализ больших данных давно и успешно применяется для определения целевой аудитории, интересов, спроса и активности потребителей. Анализ больших данных, в частности, позволяет выводить рекламу (на основе модели RTB-аукциона — Real Time Bidding) только тем потребителям, которые заинтересованы в товаре или услуге. Применение Big Data в маркетинге позволяет бизнесменам: — лучше узнавать своих потребителей, привлекать аналогичную аудиторию в Интернете; Например, сервис Google.trends может указать маркетологу прогноз сезонной активности спроса на конкретный продукт, колебания и географию кликов. Если сопоставить эти сведения со статистическими данными, собираемыми соответствующим плагином на собственном сайте, то можно составить план по распределению рекламного бюджета с указанием месяца, региона и других параметров. По мнению многих исследователей, именно в сегментации и использовании Big Data заключается успех предвыборной кампании Трампа. Команда будущего президента США смогла правильно разделить аудиторию, понять ее желания и показывать именно тот месседж, который избиратели хотят видеть и слышать. Так, по мнению Ирины Белышевой из компании Data-Centric Alliance, победа Трампа во многом стала возможной благодаря нестандартному подходу к интернет-маркетингу, в основу которого легли Big Data, психолого-поведенческий анализ и персонализированная реклама. Политтехнологи и маркетологи Трампа использовали специально разработанную математическую модель, которая позволила глубоко проанализировать данные всех избирателей США систематизировать их, сделав сверхточный таргетинг не только по географическим признаками, но также и по намерениям, интересам избирателей, их психотипу, поведенческим характеристикам и т. д. После этого маркетологи организовали персонализированную коммуникацию с каждой из групп граждан на основе их потребностей, настроений, политических взглядов, психологических особенностей и даже цвета кожи, используя практически для каждого отдельного избирателя свой месседж. Что касается Хиллари Клинтон, то она в своей кампании использовала «проверенные временем» методы, основанные на социологических данных и стандартном маркетинге, разделив электорат лишь на формально гомогенные группы (мужчины, женщины, афроамериканцы, латиноамериканцы, бедные, богатые и т. д.). В результате выиграл тот, кто по достоинству оценил потенциал новых технологий и методов анализа. Примечательно, что расходы на предвыборную кампанию Хиллари Клинтон были в два раза больше, чем у ее оппонента: Данные: Pew Research Помимо высокой стоимости, одним из главных факторов, тормозящих внедрение Big Data в различные сферы, является проблема выбора обрабатываемых данных: то есть определения того, какие данные необходимо извлекать, хранить и анализировать, а какие – не принимать во внимание. Еще одна проблема Big Data носит этический характер. Другими словами возникает закономерный вопрос: можно ли подобный сбор данных (особенно без ведома пользователя) считать нарушением границ частной жизни? Не секрет, что информация, сохраняемая в поисковых системах Google и Яндекс, позволяет IT-гигантам постоянно дорабатывать свои сервисы, делать их удобными для пользователей и создавать новые интерактивные приложения. Для этого поисковики собирают пользовательские данные об активности пользователей в интернете, IP-адреса, данные о геолокации, интересах и онлайн-покупках, личные данные, почтовые сообщения и т. д. Все это позволяет демонстрировать контекстную рекламу в соответствии с поведением пользователя в интернете. При этом обычно согласия пользователей на это не спрашивается, а возможности выбора, какие сведения о себе предоставлять, не дается. То есть по умолчанию в Big Data собирается все, что затем будет храниться на серверах данных сайтов. Из этого вытекает следующая важная проблема, касающаяся обеспечения безопасности хранения и использования данных. Например, безопасна ли та или иная аналитическая платформа, которой потребители в автоматическом режиме передают свои данные? Кроме того, многие представители бизнеса отмечают дефицит высококвалифицированных аналитиков и маркетологов, способных эффективно оперировать большими объемами данных и решать с их помощью конкретные бизнес-задачи. Несмотря на все сложности с внедрением Big Data, бизнес намерен увеличивать вложения в это направление. По данным исследования Gartner, лидерами инвестирующих в Big Data отраслей являются медиа, ритейл, телеком, банковский сектор и сервисные компании. Интеграция технологии распределенного реестра с Big Data несет в себе синергетический эффект и открывает бизнесу широкий спектр новых возможностей, в том числе позволяя: — получать доступ к детализированной информации о потребительских предпочтениях, на основе которых можно выстраивать подробные аналитические профили для конкретных поставщиков, товаров и компонентов продукта; Доступ к подробным данным об использовании и потреблении товаров в значительной мере раскроет потенциал технологии Big Data для оптимизации ключевых бизнес-процессов, снизит регуляторные риски, раскроет новые возможности монетизации и создания продукции, которая будет максимально соответствовать актуальным потребительским предпочтениям. Как известно, к технологии блокчейн уже проявляют значительный интерес представители крупнейших финансовых институтов, включая Citibank, Nasdaq, Visa и т. д. По мнению Оливера Буссманна, IT-менеджера швейцарского финансового холдинга UBS, технология блокчейн способна «сократить время обработки транзакций от нескольких дней до нескольких минут». Потенциал анализа финансовой информации из блокчейна при помощи технологии Big Data огромен. Технология распределенного реестра обеспечивает целостность информации, а также надежное и прозрачное хранение всей истории транзакций. Big Data, в свою очередь, предоставляет новые инструменты для эффективного анализа, прогнозирования, экономического моделирования и, соответственно, открывает новые возможности для принятия более взвешенных управленческих решений. Тандем блокчейна и Big Data можно успешно использовать в здравоохранении. Как известно, несовершенные и неполные данные о здоровье пациента в разы увеличивают риск постановки неверного диагноза и неправильно назначенного лечения. Критически важные данные о здоровье клиентов медучреждений должны быть максимально защищенными, обладать свойствами неизменности, быть проверяемыми и не должны быть подвержены каким-либо манипуляциям. Информация в блокчейне соответствует всем перечисленным требованиям и может служить в роли качественных и надежных исходных данных для глубокого анализа при помощи новых технологий Big Data. Помимо этого, при помощи блокчейна медицинские учреждения смогли бы обмениваться достоверными данными со страховыми компаниями, органами правосудия, работодателями, научными учреждениями и другими организациями, нуждающимися в медицинской информации. В широком понимании, информационная безопасность представляет собой защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных негативных воздействий естественного или искусственного характера. В области информационной безопасности Big Data сталкивается со следующими вызовами: — проблемы защиты данных и обеспечения их целостности; Одна из главных проблем больших данных, которую призван решить блокчейн, лежит в сфере информационной безопасности. Обеспечивая соблюдение всех основных ее принципов, технология распределенного реестра может гарантировать целостность и достоверность данных, а благодаря отсутствию единой точки отказа, блокчейн делает стабильной работу информационных систем. Технология распределенного реестра может помочь решить проблему доверия к данным, а также предоставить возможность универсального обмена ими. Информация – ценный актив, а это значит, что на первом плане должен стоять вопрос обеспечения основных аспектов информационной безопасности. Для того, чтобы выстоять в конкурентной борьбе, компании должны идти в ногу со временем, а это значит, что им нельзя игнорировать те потенциальные возможности и преимущества, которые заключают в себе технология блокчейн и инструменты Big Data.
Источник: forklog.com Комментарии: |
|