10 ОНЛАЙН-КУРСОВ ПО МАШИННОМУ ОБУЧЕНИЮ

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


?1. Neural Networks for Machine Learning от University of Toronto ?

Бесплатный 4-месячный курс на Coursera. Лектор – когнитивный психолог. В программе курса – обучение персептронов (модель восприятия информации мозгом), распознавание объектов с помощью нейронных сетей, нейронные сети Deep Belief. После рассмотрения каждого из алгоритмов даются практические советы по его применению для решения задач машинного обучения. Однако у курса высокий порог вхождения – участников ждет много математики.

?http://www.coursera.org/learn/neural-networks

?2. Machine Learning With Big Data от University of California ?

Курс подойдет всем тем, кто хочет узнать основы работы с большими данными и с помощью каких инструментов можно создавать прогностические модели.

?https://ru.coursera.org/learn/big-data-machine-learning

?3. «Введение в машинное обучение» от НИУ ВШЭ и «Яндекс»?

Курс НИУ ВШЭ создавался при участии специалистов «Школы данных Яндекса», поэтому в его основе задачи, основанные на реальных данных. Слушатели узнают об основных методах машинного обучения и их особенностях, научатся оценивать качество моделей и их пригодность для решения конкретной задачи. От студентов ожидают знаний об основных понятиях математики и базовых навыков программирования.

?https://ru.coursera.org/learn/vvedenie-mashinnoe-obuchenie

?4. «Machine Learning» от Stanford University?

Курс познакомит с наиболее эффективными алгоритмами машинного обучения, у слушателей будет возможность получить опыт их практического применения. Стэнфордский курс также обещает лучшие инновационные практики Кремниевой Долины. Максимально широкое введение в машинное обучение, data mining и статистические методы распознавания образов. Однако нужно учесть, что практические задания слушатели выполняют не при помощи Python, а в Octave.

?https://www.coursera.org/learn/machine-learning

?5. «Machine Learning Foundations: A Case Study Approach» от University of Washington?

Профессоры из Университета Вашингтона дают по ходу курса практические примеры с реальными наборами данных, не перегружая курс углубленным изучением, сосредоточившись именно на знакомстве с темой.

?https://ru.coursera.org/learn/ml-foundations

?6. «Машинное обучение» от «Школы данных Яндекса» ?

В рамках курса рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10-15 лет. По сути это более продвинутая версия совместного курса «Яндекса» и ВШЭ.

?https://yandexdataschool.ru/edu-process/courses/machine-learning

?7. «Машинное обучение и анализ данных» от МФТИ и Yandex Data Factory?

Ученые Московского физико-технического института (МФТИ) и практики из «Яндекса» объединили свои усилия для создания этого курса по анализу данных и машинному обучению. Курс поделен на несколько частей: «Математика и Python для анализа данных», «Обучение на размеченных данных», «Поиск структуры в данных», «Построение выводов по данным», «Прикладные задачи анализа данных».

?https://www.coursera.org/specializations/machine-learning-data-analysis

?8. Practical Machine Learning от Johns Hopkins University ?

Курс от частного исследовательского университета, занимающего высокие позиции в рейтингах вузов. Занятия продлятся 4 недели, авторы — профессора биостатистики из Bloomberg School of Public Health.

?https://www.coursera.org/course/predmachlearn

?9. Cognitive Services APIs от Microsoft ?

Ведущий мировой производитель софта расскажет о возможностях машинного обучения на примере своей платформы для распознавания Cognitive Service.

?https://www.microsoft.com/cognitive-services/

?10. Intro to machine learning ?

Наиболее карьероориентированный курс по машинному обучению. На Udacity он встроен в цепочку курсов, которая называется Nanodegree Program и, в конечном счете, позволяет получить знания, необходимые для работы на позиции data analyst. Один из кураторов курса – профессор Стэнфорда и сооснователь Udacity Sebastian Thrun.

?https://www.udacity.com/course/intro-to-machine-learning--ud120

Источник:

https://te-st.ru/2017/03/16/10-online-courses-on-machine-learning/

Комментарии: