Положиться на робота: как искусственный интеллект помогает бизнесу |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-04-12 20:30 Данных становится все больше, а принимать решения нужно все быстрее. IBM считает, что всего через пять лет бизнес не сможет принимать большинство важных решений, не прибегая к помощи когнитивных сервисов на базе искусственного интеллекта (ИИ). PwC идет в своих выводах еще дальше: согласно их опросам, топ-менеджеры более 2000 крупных компаний уже сегодня в 41% случаев опираются на аналитические данные, полученные в результате использования технологий машинного обучения. Управление рисками — не исключение. Ручное управление Современные компании сталкиваются более чем с 20 видами рисков — финансовых, технологических, юридических, временных и др. Ситуация риска предполагает несколько вариантов развития событий, можно выиграть или потерять. Для управления риском выявляют значимые факторы, действуя по принципу «предупрежден — значит вооружен». Чем более качественно собирается ключевая информация, тем быстрее можно продумать выход из положения. Так, например, работают трейдеры на бирже: в реальном времени они ведут анализ данных с крупнейших мировых торговых площадок, отслеживают последовательности событий и определяют закономерности, которые могут привести к росту или падению цен на акции. Профессии в финансовом секторе, связанные с принятием решений, находящихся в зоне риска, входят в тройку самых стрессовых: к ним, помимо уже упомянутых трейдеров, относятся риск-менеджеры и инвестиционные банкиры. Укол иголки в стоге сена Что отличает интеллектуальные системы риск-менеджмента от человека? Во-первых, они могут одновременно оценивать риски со всех сторон. Это важно, потому что незнание или игнорирование даже одного из аспектов зачастую становится тем кусочком «пазла», который рушит картину стабильности и процветания компании. Американский банк Wells Fargo, входящий в первую тридцатку Fortune 500, был вынужден уволить 5,3 тыс. сотрудников за мошенничество и заплатить штраф $185 млн. Сотрудники открыли более 2 млн счетов и 500 тыс. кредитных карт без согласия клиентов. Менеджеры Wells Fargo не учли потенциальные риски, заложенные в банковской системе поощрений: оценка эффективности сотрудников, премии и повышение зарплаты напрямую зависели от вновь выпущенных кредитных карт. Во-вторых, интеллектуальные решения анализируют неструктурированные данные из самых разных источников с огромной скоростью. Уже сейчас ИИ может справиться с большинством задач в десятки раз быстрее человека: проверить, соблюдает ли компания требования регулятора, обнаружить рискованные действия на фондовом рынке, найти финансовые нарушения. Большой общественный резонанс вызвало дело Rolls Royce: преступные действия в крупнейшем автомобильном концерне впервые раскрыла система отбора и анализа документов на базе решения, использующего углубленную текстовую аналитику. Всего за несколько месяцев программа проверила, сопоставила и нашла взаимосвязи более чем в 30 млн документов компании и помогла следователям выявить нарушения законодательства в 12 странах. На такое масштабное расследование рядовые юристы потратили бы несколько лет. Аналитики McKinsey полагают, что к 2025 году подобные системы будут проводить до трети всех корпоративных проверок. Кредит по соцсетям Искусственный интеллект эффективно работает на ключевых этапах оценки рисков — от сбора и анализа информации до разработки алгоритмов управления. Как это работает, можно понять на примере семантической технологии анализа и понимания текстов на естественном языке. Такая технология применяется при кредитном скоринге. Платформа собирает информацию из клиентской заявки, документов и разных отраслевых баз (например, налоговой) и «рисует» портрет клиента — возраст, стаж работы, род деятельности. Затем ИИ обогащает его неструктурированными данными из соцсетей, поисковых систем, отраслевых баз и ищет потенциальные источники риска. Например, определяет, не находится ли имущество клиента в суде. Единственный ли он владелец квартиры или машины. Есть ли у заемщика дети. Насколько надежны организации, в которых он работает. Получив всю информацию из разных источников, система определяет, насколько критично ошибочное решение. Это позволяет банкам одобрять необходимое количество кредитов, при этом сохраняя минимальный уровень риска. Другой пример — мониторинг финансирования сомнительных операций. Такой сервис недавно запустила в работу Mastercard. Решение Decision Intelligence, основываясь на глубинном анализе поведения клиента, помогает определять, действительно ли он совершает транзакцию. В основе лежат способности ИИ-систем к обучению, позволяющие распознавать признаки и сигналы мошеннических операций и даже предсказывать вероятность мошеннических действий до их совершения. Предвидеть разрушения Врачи уже используют ИИ, чтобы заранее обнаруживать риски для здоровья больных. В Philips разработали технологию, которая позволяет автоматически выявлять туберкулез на рентгеновских снимках грудной клетки. Используя множество изображений для глубокого машинного обучения, специалисты научили ИИ находить у больного малейшие признаки туберкулеза на ранней стадии развития болезни. Технологии помогают и коммунальным службам: например, компания HitBot USA создала робота для проверки миллионов водопроводных труб по всем США. Система определяет, в каких областях трубы больше подвержены старению и порче. Для этого она изучает старые трубы, поднятые из-под земли ранее, оценивает динамику почвенных процессов, а также электромагнитное излучение от силовых линий. По оценкам компании, это позволит коммунальным службам страны сэкономить $400 млрд в год. Как будут дальше развиваться технологии риск-менеджмента? Можно предположить, что люди все больше будут полагаться на ИИ. Инвестиционная компания Sanlam создает автоматизированный сервис на основе машинного обучения, который будет прогнозировать целевую доходность клиента с минимальными рисками. Использование ИИ позволит полностью исключить человеческий фактор при выборе тех или иных инвестиций — в первую очередь эмоции. В феврале разработчик информационных технологий для воздушного транспорта, компания SITA, объявил о планах по созданию технологии, которая будет заранее находить возможные сбои в расписании полетов — это помогает вовремя принять решение об организации альтернативных рейсов. По некоторым расчетам, это поможет авиакомпаниям сэкономить до $25 млрд в год. Полиция Дубая будет использовать искусственный интеллект для прогнозирования преступлений. Алгоритм машинного обеспечения, проанализировав огромные базы данных о преступлениях, будет выявлять закономерности и показывать, в каких районах имеется наибольшая вероятность совершения преступления. Это позволит стражам правопорядка заранее высылать патрули в зоны риска. Мастерство обучения Искусственный интеллект открывает для бизнеса огромные возможности. Но, как и любой другой технологией, им нужно грамотно управлять — прежде всего, обучать систему с помощью правильно подобранных алгоритмов, данных и признаков для анализа. Иными словами, чтобы эффективно использовать ИИ, нужно сначала обучить систему на качественной выборке данных, а затем убедиться в том, что она выдвигает правильные гипотезы в оценке тех или иных явлений. Показателен пример с «пузырями фильтров» в Facebook: в результате разработанного компанией алгоритма пользователь видит только то, что ему нравится и соответствует его взглядам, и может упустить важную для него информацию. Еще один пример — сетевые тролли всего за два вечера превратили чат-бот от компании Microsoft, созданный для общения в Twitter, в настоящего грубияна. Компании пришлось свернуть проект, чтобы как следует доработать существующий алгоритм. Способность к обучению — главное преимущество ИИ в борьбе с рисками. А лучшим учителем для ИИ все равно остается человек. Точка зрения авторов, статьи которых публикуются в разделе «Мнения», может не совпадать с мнением редакции. Источник: www.rbc.ru Комментарии: |
|