Нейросеть различила шесть классов снежинок.

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Швейцарские ученые разработали компьютерный алгоритм, который способен автоматически распознавать шесть классов твердых атмосферных осадков с точностью до 95 процентов.

Понимание микрофизики гидрометеоров важно для оценки атмосферных осадков, в частности их количества. Сейчас такая оценка проводится путем дистанционного зондирования Земли, например с помощью космических спутников, и математического моделирования — численного прогноза погоды (NWP). При этом точность методов зависит от полноты данных о микроструктуре дождевых капель или снежинок — морфологии, размера, массы, агрегатного состояния, — их сбором занимаются поляриметрические метеорадары или бортовые датчики самолетов. Однако существующие системы, как правило, не позволяют быстро типизировать гидрометеоры и являются дорогими в обслуживании.

Более перспективными для анализа метеоданных считаются технологии на основе метода главных компонент (PCA) и искусственных нейросетей. Так, согласно прошлым работам, подобные алгоритмы могут автоматически классифицировать облака с точностью свыше 80 процентов. Получить высококачественные изображения гидрометеоров, в свою очередь, позволяют мультиракурсные камеры для съемки снежинок (Multi-Angle Snowflake Camera, MASC). Эти системы оснащены тремя камерами, расположенными под углом 36 градусов, с разрешением 33 микрометра на пиксель. В ходе съемки MASC делает монохромные стереографические снимки объектов размером 100–100 000 микрометров.

В новой статье исследователи из Федеральной политехнической школы Лозанны и Федерального ведомства по метеорологии и климатологии (MeteoSwiss) описали технологию автоматизации анализа изображений, сделанных с помощью MASC. На первом этапе авторы собрали более двух миллионов снимков снежинок в Альпах и на базе французской научной антарктической станции Дюмон Д’Юрвиль в 2600 километрах от Южного полюса. Затем в полуавтоматическом режиме они оценили текстуру, морфологию и форму гидрометеоров, выявив закономерности: в частности, прямоугольные узоры были характерны для столбчатых кристаллов, тогда как у плоских они имели гексагональную форму, а у крупы — коническую.

Поскольку снимки были сделаны наземными камерами и включали в себя не все возможные образцы, ученые упростили десятиклассовую типизацию метеорологов Чожи Магоно (Ch?ji Magono) и Чунг Ву-Ли (Chung Woo Lee), известную с 1966 года. В результате они получили шесть классов снежинок: малые частицы (SP), столбчатые кристаллы (CC), планарные кристаллы (PC), сочетающие столбчатые и планарные кристаллы (CPC), агрегаты (AG) и крупы (GR). После этого группа создала алгоритм, который обучала методом мультиноминальной логистической регрессии (MLR) на 3712 снимках. Последующие испытания показали, что алгоритм хорошо справляется с распознаванием 94,7 процента снежинок, в том числе подтаявших.

По словам авторов, показатель можно увеличить за счет тренировки нейросети на большем количестве данных. Примечательно, что частота выпадения разных классов гидрометеоров оказалась связана с регионом: около половины (49 процентов) снежинок в Альпах исследователи отнесли к агрегатам, меньше — к малым частицам и крупе. В Антарктиде, согласно классификации, преобладают малые частицы (54 процента) и наблюдается меньше агрегатов и крупы. Также любопытно, что «звездные дендриты», часто ассоциирующиеся с «идеальными» снежинками, встречались одинаково редко: для Антарктиды и Альп этот показатель составил пять и десять процентов соответственно.

Статья опубликована в журнале Atmospheric Measurement Techniques.


Источник: naked-science.ru

Комментарии: