Моделирование психиатрической патологии: от генетических исследований до клеточных фенотипов (Часть I) |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-04-12 15:01 Моделирование психиатрической патологии: от генетических исследований до клеточных фенотипов (Часть I). Основные программы по психиатрической генетике выявили более 150-ти локусов, связанных с повышенным риском психических расстройств. Функции этих локусов пересекаются на небольшом количестве метаболических путей, которые возможно ответственны за развитие шизофрении и аутизма, а также некоторых других психических расстройств. Тем не менее, клеточные фенотипы, которые наблюдаются при психических расстройствах, не были определены. Последние достижения в области генетики и биологии стволовых клеток открывают нам новые перспективы для моделирования психических расстройств с помощью стволовых клеток. Перепрограммирование клеток и использование индуцированных плюрипотентных стволовых клеток (IPSC) дают учёным возможность проследить на клеточных колониях результат генетических мутаций. Технологии IPSC меньше десяти лет, но она выглядит достаточно перспективной и возможно поможет сложить в единую картину генетические, клинические и биологические данные. Несмотря на преимущества метода, у него так же наблюдаются и многочисленные недостатки. В этом обзоре экспертов, будут критически рассмотрены проблемы моделирования психических расстройств, потенциальные решения этих проблем и то, как технология IPSC может быть использована для разработки аналитической основы оценки и терапии основных патологических процессов в психиатрии. ? Необходимость моделирования заболеваний: Психические расстройства виновны в крупных экономических убытках, социальных и личных тяготах. Вместе они составляют 13% всех болезней и при этом являются основной причиной нетрудоспособности в мире. Несколько линий исследований, использующих визуализацию головного мозга, посмертные исследования ткани мозга и генетические техники, показывают нарушенную клеточную функцию, наблюдаемую при многих психических расстройствах (например, при шизофрении ,биполярном расстройстве, расстройствах аутистического спектра, нервной анорексии и большом депрессивном расстройстве). Тем не менее, опыты in vitro с учетом результатов предыдущих исследований проведены не были. Таким образом, отсутствие понимания механизмов болезни затрудняет разработку лечения. Индуцированные плюрипотентные стволовые клетки (IPSC) являются интересным и весьма перспективным инструментом для моделирования заболеваний. Конечной целью этого инструмента является создание патофизиологически релевантных колоний клеток для тестирований лекарств. IPSC-технология позволила исследовать нарушения развития нервной ткани, патофизиологию которых нельзя было изучить на людях или животных. Тем не менее, для того, что бы разработать анализы, основанные на технологии IPSC, которые действительно отражают патофизиологию психических расстройств, нам необходимо точное понимание того, какие именномолекулярные пути и клеточные структуры будут вовлечены в патологический процесс. Далее будут рассмотрены исследования клеточных моделей и фенотипов в контексте имеющейся на данный момент информации о генетике психических расстройств, полученной в результате исследования моделей заболевания на животных. Будут обсуждаться текущие возможности и дальнейшее развитие данной технологии, потенциальные трудности в перепрограммировании клеток, их культивирование и дифференциация, создание соответственных клеточных фенотипов, которые могут быть превращены в модели болезни и в конечном счете поиск мишеней фармакологических препаратов. ? Достижение генетики в психиатрии: шизофрения. Десятилетия исследований близнецов подтвердили, что психические расстройства являются наследственными. Тем не менее, выявление причинных генетических вариантов до недавнего времени, было особенно трудоемким. Беспрецедентные успехи в последнее десятилетие, показали, что на психические расстройства влияют комбинации сотен частых генетических вариантов, каждый из которых оказывает относительно небольшое влияние на риск возникновения заболевания, а так же редких вариантов, но с большими эффектами. Были достигнуты значительные успехи в выявлении комбинаций таких генов и скорее всего еще многие комбинации будут найдены, но пока остается неясным как именно эти генетические варианты повышают риск развития заболевания. Генетическая эпидемиология так же подтверждает данные о наследовании шизофрении (Наследуемость 0,64 в Северных популяциях, так же 0,81 в близнецовом методе). Исследования полногенномоного поиска ассоциаций (GWAS) оценивает наследуемость полиморфизма единичного нуклеотида при шизофрениивболее 0,30, помимо этого также выявили 108 независимых геномных локусов риска. Большинство локусов, идентифицированных в GWAS достаточно широкие (в среднем 129 кб) с небольшим риском развития шизофрении (средний относительный риск 1,08). В результате исследований по секвенированию генов не было выявлено специфического гена шизофрении, но были предложены определенные наборы генов, например ген потенциал-зависимого кальциевого канала, ARC-протеина, или FMRP-протеинов. Исследования вариаций числа копий дали уже около десятка вариаций, ассоциированных с шизофренией. Результаты недавних исследований позволяют предположить наличие кумулятивных эффектов между общими и редкими вариантами генов у тех людей с высоким риском, развития шизофрении. Шизофрения и расстройства аутического спектра пересекаются в своем патогенезе, например в синаптогенезе, в функционировании синапсах и в эпигенетических процессах, а так же они имеют многие общие гены, которые высоко экспрессируются во время утробного развития. Несмотря на эти беспрецедентные достижения в области генетики шизофрении, очень немногие из нынешних результатов однозначно указывают на конкретные отдельные гены, легко доступные для биологических, клинических или терапевтических исследований. Для того, чтобы показать свою ценность, такие исследования должны выявить тесную связь между генетической вариацией и фенотипом, что имеет важное значение для расстройства. Эта взаимосвязь является важным фактором для понимания молекулярных путей, которые ведут к шизофрении и необходимо разработать анализы на основе IPSC, которые отражают патофизиологию шизофрении. Один генетический вариант небольшого эффекта вряд ли принесет ощутимое изменение клеточного фенотипа, поэтому ученые стремятся смоделировать либо кумулятивный эффект сотни генетических вариантов риска малого эффекта или одного варианта с высокой пенетрантностью и большим эффектом. Технология IPSC обеспечила весьма перспективный инструмент для исследования болезней человека, и особенно хорошо подходит для нарушений, вызванных не одной мутацией, в частности для психических расстройств. Поскольку исследования IPSC проводятся с использованием клеток пациентов, можно выбрать пациентов с высокой генетической предрасположенностью к болезни, либо из-за скопления многих распространенных вариантов малого эффекта либо из-за носительства редкого варианта с большим эффектом. Кроме того, за счет использования клеток, полученных от пациентов с целевым набором аллелей риска, можно также захватить полный генетический фон человека, который включает в себя возможные генетические модификаторы, в настоящее время неизвестные. Несколько первоначальных IPSC исследований шизофрении уже были проведены и проверены, в результате чего выявили различия в синаптических функциях IPSC-клеток, полученных от пациентов. Однако эти первоначальные исследования также наглядно иллюстрируют некоторые из недостатков исследований IPSC для идентификации клеточных признаков, связанных с шизофренией. Эти подводные камни будут обсуждены более подробно ниже, после рассмотрения альтернативных подходов с использованием животных моделей шизофрении и расстройств аутического спектра. ? Модели шизофрении и расстройств аутистического спектра на грызунах: Для создания моделей шизофрении и расстройств аутического спектра на грызунах было испробовано несколько способов. Использование грызунов дает ряд преимуществ в плане технического исполнения экспериментов, так как нам хорошо известны поведенческие и физиологические тесты, к тому же сегодня имеются большие возможности трансгенной манипуляции для грызунов. Например, было показано, что материнский стресс и недостаточное питание, инфекции и гипоксические состояния при рождении являются триггерами развития шизофрении, что так же может бытьвоспроизведено в моделях на грызунах с помощью таких манипуляций, как пренатальное введение препарата, нарушение нейрогенеза во время гестационного периода, неонатальное поражение вентрального гиппокампа, искусственная социальная изоляция и перинатальной активация иммунной системы матери. Генетические манипуляции также использовались для распознавания нескольких целевых генов, участвующих в развитии шизофрении и расстройств аутического спектра у трансгенных мышей. Важным предостережением в отношении трансгенных моделях является то, что исследователи могут задействовать у мышей гены, которые вызывают заболевания именно у мышей, но не у людей. Хотя модели на грызунах достаточно податливые и удобные, они все равно не являются совершенными. Во-первых, ни одна из моделей на грызунах, на которых уже установили определенные нейрофизиологические, нейроанатомические и поведенческие особенности генетических мутаций, замешанных в шизофрении или в расстройствах аутического спектра, не повторяет сложность этих расстройств. Таким образом, информация об этиологии шизофрении и расстройств аутическогоспектра, полученная от животных моделей, является по своей природе фрагментарной. Каждая модель отображает определенный аспект, который должен быть интегрирован в большее целое, а этот факт уже сам по себе приносит невнятность в само изучение этиологии. Во-вторых, модели на животных не могут быть изучены с необходимойт щательностью. Действительно, как можно оценить воздействие на процессы мышления, восприятия и абстрактного обучения у животных, если они могут быть полностью переданы только с помощью языка? Как следствие этого, многие основные особенности психических расстройств могут быть оценены на животных моделях лишь косвенно, с постановкой искусственного акцента на более простые поведенческие и физиологические особенности, которые могут быть легко идентифицированы и не всегда ясно, как именно эту оценку можно соотнести с психопатологией человека. В-третьих, индукция болезненных состояний у грызунов может включать острые фармакологические или другие нарушения, которые не точно воспроизводят причины психических расстройств человека. Даже трансгенные подходы, с использованием одних и тех же генов могут быть неточными, так как манипулирование одним единственным геном вряд не может покрыть все генетическое разнообразие психиатрической патологии. Кроме того,наборы генов, о которых идет речь, могут отличаться у грызунов и человека, и генетические различия будут только увеличиваться там, где гены и окружающая среда широко взаимодействуют в развитии болезни. В-четвертых, грызуны и люди имеют совершенно разную продолжительность жизни, которая может не быть надлежащим образом конгруэнтной относительно временной шкалыразвития болезни. Последнее, фармакология потенциального лекарственного средства может отличаться у грызуна и человека, создавая ложноположительные и ложноотрицательные результаты в доклинических испытаниях. В заключение следует сказать, что только небольшой процент психических расстройств вызваны вариациями одного единственного гена и потому может быть смоделирован с помощью трансгенных мышей. Действительно, во многих клинических исследованиях, основанных на перспективных мишенях для лекарственных средств, найденных у животных, не удалось найти аналога лекарственного препарата для человека. Как следствие, из-за трудностей в моделировании полигенного риска животные модели стали менее привлекательными в моделировании сложных психиатрических расстройств. Однако модели заболеваний с использованием трансгенных мышей расширили наше понимание потенциальных механизмов, регулируемых генов, которыеучаствуют в патогенезе психиатрических расстройств. В таблице 1 (vk.cc/6vaBDN) приведено сравнение некоторых из основных преимуществ моделей трансгенных мышей с таковыми у IPSC моделей. ? Клеточные фенотипы пациентов. Ключевой проблемой для моделирования болезни на основе IPSC является определении клеточных фенотипов, которые точно соответствуют патофизиологии болезни. Все большее число докладов показали, что для многих заболеваний можно выявить конкретные патофизиологические процессы в модели IPSC. Эти заболевания сильно варьируются: от сердечно-сосудистых заболеваний, рака, глазных заболеваний, сахарного диабета до неврологических расстройств головного мозга. Можно ли такой же подход применить к сложным психическим расстройствам? Проблема состоит в том, что почти все психические расстройства характеризуется не только клиническими признаками и симптомами, но так же отсутствием независимой проверки с помощью объективных биомаркеров. Таким образом, как могут эти клинические фенотипы проявиться в клетках? Важнейшей нерешенной проблемой является интенсивно изучаемая идентичность устойчивых клеточных «считываний», которые типичны для любого психического расстройства. Получения удовлетворительных результатов предвещает новую степень биологической объективности и количественной оценки исследования психических расстройств. Цель заключается в поиске нескольких клеточных фенотипов или параметров, которые коррелируют с психическими расстройствами, а также в создании клеточного профиля и характеристики клеток, полученных из общей популяции пациентов. Хотя набор клеточных фенотипов психических расстройств еще предстоит установить, мы можем определить некоторые из их желаемых характеристик. Во-первых, клеточные фенотипы должны относиться к биологическим путям, выявленным генетически. Во-вторых, хотя и есть множество генов риска, участвующихна тех или иных уровнях в несопоставимых биологических путях, клеточные фенотипы должны сходиться в гораздо меньшем количестве метаболических путей. В-третьих, фенотипы должны быть подвергнуты количественной оценке. Наконец, для того чтобы принести пользу вразработке лекарственных средств, клеточные фенотипы должны быть получены от пациентов с отмененным медикаментозном лечением. Подходы основанные на человеческих IPSC не до конца проливают свет на сложность центральной нервной системы человека, тем не менее, клеточные фенотипы имеют отношение скорее к механизмам молекулярных заболеваний, чем к тканевому или организменному уровню, таким образом, клеточные фенотипы не учитывают компенсаторные гомеостатические процессы, которые уравновешивают влияние патологических генетических вариантов генов на ткани и органы. Поэтому идентификация клеточных фенотипов может предложить более прямое моделирование патофизиологического процесса. Все это естественно должно сверяться с клиническими данными. Ниже обсуждаются различные фенотипы IPSC, полученные из клеток пациентов и изучения данных фенотипов дляполучения информацию о заболеваниях. ?Библиография: Falk A et al. Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Mol Psychiatry. 2016 Sep;21(9):1167-79. doi: 10.1038/mp.2016.89. ?Не забывайте подписываться на наш официальный Instagram — instagram.com/psyandneuro и канал вTelegram — telegram.me/psy_and_neuro? Комментарии: |
|